码迷,mamicode.com
首页 > Web开发 > 详细

Deep Belief Network

时间:2016-10-19 01:27:32      阅读:697      评论:0      收藏:0      [点我收藏+]

标签:

Deep Belief Network
3实例
3.1 测试数据
按照上例数据,或者新建图片识别数据。

3.2 DBN实例
//****************例2(读取固定样本:来源于经典优化算法测试函数Sphere Model)***********//

//2 读取样本数据

Logger.getRootLogger.setLevel(Level.WARN)

valdata_path ="/user/huangmeiling/deeplearn/data1"

valexamples =www.ycyc66.cn/ sc.textFile(data_path).cache()

valtrain_d1 =www.zhenlyule.cn examples.map { line =>

valf1 = line.split("\t")

valf =f1.map(f =>www.egouyuLe.cn f.toDouble)

valid =f(0)

valy = Array(f(1))

valx =f.slice(2,f.length)

(id, new BDM(1,y.length,y),new BDM(1,x.length,x))

}

valtrain_d =train_d1.www.zhenloyl88.cn map(f => (f._2, f._3))

valopts = Array(100.0,20.0,0.0)

//3 设置训练参数,建立DBN模型

valDBNmodel =new DBN().

setSize(Array(5, 7)).

setLayer(2).

setMomentum(0.1).

setAlpha(1.0).

DBNtrain(train_d, opts)

//4 DBN模型转化为NN模型

valmynn =DBNmodel.www.yghrcp88.cn dbnunfoldtonn(1)

valnnopts = Array(100.0,50.0,0.0)

valnumExamples =train_d.count()

println(s"numExamples =www.huacairen88.cn $numExamples.")

println(mynn._2)

for (i <-0 tomynn._1.length -1) {

print(mynn._1(i) +"\t")

}

println()

println("mynn_W1")

valtmpw1 =mynn._3(0)

for (i <-0 totmpw1www.jyz521.com/ .rows -1) {

for (j <-0 totmpw1.cols -1) {

print(tmpw1(i,j) +"\t")

}

println()

}

valNNmodel =new www.ludingyule66.cn NeuralNet().

setSize(mynn._1).

setLayer(mynn._2).

setActivation_function("sigm").

setOutput_function("sigm").

setInitW(mynn._3).

NNtrain(train_d, nnopts)

//5 NN模型测试

valNNforecast =NNmodel.www.yyzx66.cn/ predict(train_d)

valNNerror =NNmodel.Loss(NNforecast)

println(s"NNerror = $NNerror.")

valprintf1 =NNforecast.map(f => (www.myqunliphoto.com/ f.label.data(0), f.predict_label.data(0))).take(200)

println("预测结果——实际值:预测值:误差")

for (i <-0 untilprintf1.length)

println(printf1(i)._1 +"\t" +printf1(i)._2 +"\t" + (printf1(i)._2 -printf1(i)._1))

Deep Belief Network

标签:

原文地址:http://www.cnblogs.com/0371sq/p/5975394.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!