CODE:
#!/usr/bin/python # -*- coding: utf-8 -*- ''' Created on 2014-8-13 @author: guaguastd @name: friendship_graph_construct.py ''' import networkx as nx import requests import json ACCESS_TOKEN = ‘' # impot login from login import facebook_login # access to facebook facebook_api = facebook_login() friends = [ (friend['id'], friend['name'],) for friend in facebook_api.get_connections('me', 'friends')['data'] ] url = 'https://graph.facebook.com/me/mutualfriends/%s?access_token=%s' mutual_friends = {} # spawn a separate request for each iteration for friend_id, friend_name in friends: r = requests.get(url % (friend_id, ACCESS_TOKEN,), verify=False ) response_data = json.loads(r.content)['data'] mutual_friends[friend_name] = [ data['name'] for data in response_data ] nxg = nx.Graph() [ nxg.add_edge('me', mf) for mf in mutual_friends ] [ nxg.add_edge(f1, f2) for f1 in mutual_friends for f2 in mutual_friends[f1]] cliques = [c for c in nx.find_cliques(nxg)] num_cliques = len(cliques) clique_sizes = [len(c) for c in cliques] max_clique_size = max(clique_sizes) avg_clique_size = sum(clique_sizes) / num_cliques max_cliques = [c for c in cliques if len(c) == max_clique_size] num_max_cliques = len(max_cliques) max_clique_sets = [set(c) for c in max_cliques] friends_in_all_max_cliques = list(reduce(lambda x, y: x.intersection(y), max_clique_sets)) print 'Num cliques:', num_cliques print 'Avg clique size:',avg_clique_size print 'Max clique size:', max_clique_size print 'Num max cliques:', num_max_cliques print print 'Frieds in all max cliques:' print json.dumps(friends_in_all_max_cliques, indent=1) print print 'Max cliques:' print json.dumps(max_cliques, indent=1)
Num cliques: 11 Avg clique size: 2 Max clique size: 3 Num max cliques: 6 Frieds in all max cliques: [ "me" ] Max cliques: [ [ "me", "Soofi Cat", "Nanu Soria" ], [ "me", "Jorge Rodriguez", "Ayel\u00e9n Basualdo" ], [ "me", "Jorge Rodriguez", "\u5434\u57ce" ], [ "me", "Jorge Rodriguez", "Wanda Bianchi" ], [ "me", "Jorge Rodriguez", "Jeniifer Mendez" ], [ "me", "Jorge Rodriguez", "Karen Csr" ] ]
Python 对Facebook用户Friendship的聚类分析,布布扣,bubuko.com
Python 对Facebook用户Friendship的聚类分析
原文地址:http://blog.csdn.net/guaguastd/article/details/38552881