码迷,mamicode.com
首页 > Web开发 > 详细

PVANET----Deep but Lightweight Neural Networks for Real-time Object Detection论文记录

时间:2016-10-27 20:10:37      阅读:1416      评论:0      收藏:0      [点我收藏+]

标签:cep   ext   通道数   san   调整   eal   reg   neu   time   

    arxiv上放出的物体检测的文章,在Pascal voc数据集上排第二。源码也已放出(https://github.com/sanghoon/pva-faster-rcnn),又可以慢慢把玩了。这篇文章遵循faster-rcnn“CNN feature extraction + region proposal + RoI classification”的pipeline,重新设计了feature extraction的网络结构。"The devil is in details",文章利用很多的cnn tricks,详述了网络设计的细节。

  •    C.ReLU: Earlier building blocks in feature generation

                            技术分享

C.ReLU是在ICML2016一篇文章提出。文章发现,CNN的初期阶段,神经元的激活值正好相反。C.ReLU把卷积输出的通道数减半,将输出与其负向输出级联,在没有损失正确率的情况下,获得两倍的加速。

  • Inception: Remaining building blocks in feature generation

                               技术分享

Inception是GoogleNet的重要组成模块,却还没用在检测任务上。Inception中的1x1卷积核不仅能够增加网络的非线性,同时能够保持前一层的感受野,因此对小物体的检测有很好的作用。文中还把原来5x5的卷积核换成两个3x3的卷积核,减少参数,增加网络非线性和模块感受野。

  • HyperNet: Concatenation of multi-scale intermediate outputs

                                            技术分享

HyperNet将不同卷积阶段的卷积层级联起来,对同时需要分类和定位的检测任务来说有很好的效果。

论文的级联为:

combines 1) the last layer and 2) two intermediate layers whose scales are 2x and 4x of the last
layer, respectively.

  • The pvanet architecture    

                   技术分享

  • Deep network training

文章用了residual connections 和batch normalization加速网络收敛。BN层加在ReLU层后面,学习率根据plateau detection自动调整。
RPN用了25个anchor(5 scales(3,6,9,16,25),5 aspect ratios(0.5,0.557,1.0,1.5,2.0))。最后的全连接层使用了简单的SVD分解,map有部分降低,检测速度加快。

  • result

                         技术分享 

                           技术分享

 

PVANET----Deep but Lightweight Neural Networks for Real-time Object Detection论文记录

标签:cep   ext   通道数   san   调整   eal   reg   neu   time   

原文地址:http://www.cnblogs.com/slyz/p/6004417.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!