标签:登录界面 nis date evel 不兼容 变量 nload 环境 更改
1 说明:
本机配置:显卡gtx970,ubuntu16.4.1+cuda8.0+cudnn v5+tensorflow0.11
由于我尝试了ubuntu14.04,安装Nvidia驱动之后,会出现循环登录的问题,并始终无法找到有效的解决途径,所以只能选择ubuntu16.04了。
镜像地址 https://www.ubuntu.com/download/alternative-downloads
https://developer.nvidia.com/cuda-downloads(下载地址)
说明:
(1)在NVIDIA的CUDA下载页面下,选择要使用的CUDA版本进行下载。
(2)我们这里使用CUDA8.0(页面有提示GTX1070、GTX1080支持8.0版本),学员如果没有使用以上两个版本的GPU,可以下载CUDA7.5。DOWNLOAD(下载)。
(3)下载需要注册。
(4)图解选择
注意:使用deb(local)版本。
下载地址: https://developer.nvidia.com/cudnn(需要登录)
说明:
(1)下载需要填写一个调查问卷,就三个选项,建议认真填写,毕竟人家免费给咱使用。
(2)填写完毕点击 I Agree To 前面的小方框
选择cudnn v5.1 for linux
tensorflow github上面提到 4 种安装方式,本教程使用 第四种 源码安装
Virtualenv installation
Anaconda installation
Docker installation
Installing from sources
https://github.com/tensorflow/tensorflow(下载地址)
说明: 我选择的是linux gpu python2
(2) 点击Python 2开始下载。
详情请查看之前笔记windows系统安装ubuntu双系统
打开terminal输入以下指令:
sudo apt-get update
然后在系统设置->软件更新->附加驱动->选择nvidia最新驱动(361)->应用更改
ubuntu的gcc编译器是5.4.0,然而cuda8.0不支持5.0以上的编译器,因此需要降级,把编译器版本降到4.9:
在terminal中执行:
sudo apt-get install g++-4.9 sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9 20 sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 10 sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.9 20 sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 10 sudo update-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30 sudo update-alternatives --set cc /usr/bin/gcc sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++ 30 sudo update-alternatives --set c++ /usr/bin/g++
在cuda所在目录打开terminal依次输入以下指令:
cd /home/***(自己的用户名)/Desktop/###(这个命令意思是找到刚刚我们用U盘传过来的文件) sudo dpkg -i cuda-repo-ubuntu1604-8-0-rc_8.0.27-1_amd64?.deb sudo apt-get update sudo apt-get install cuda?
打开terminal依次输入以下指令:
cd /home/***(自己的用户名)/Desktop/ #(这个命令意思是找到刚刚我们用U盘传过来的文件) tar xvzf cudnn-8.0-linux-x64-v5.1-ga.tgz #(解压这个文件) sudo cp cuda/include/cudnn.h /usr/local/cuda/include # (复制) sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 # (复制) sudo chmoda+r/usr/local/cuda/include/cudnn.h/usr/local/cuda/lib64/libcudnn*
按照上图的教程,在terminal中输入以下命令:
sudo gedit ~/.bash_profile #打开.bash_profile
然后在打开的文本末尾加入:
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64" export CUDA_HOME=/usr/local/cuda
继续在terminal中输入:
source ~/.bash_profile #使更改的环境变量生效
当然,也有其他教程在文件~/.bashrc文件中写入的,方法与上面的类似。如果在后面配置./config文件出现问题时,可以实现这个方法。
在terminal中输入以下命令:
sudo apt-get install python-pip python-dev
由于本教程使用tensorflow源码编译/安装,所以需要使用 bazel build。
链接:https://www.bazel.io/versions/master/docs/install.html
在terminal中依次输入以下1-7的命令
sudo add-apt-repository ppa:webupd8team/java sudo apt-get update sudo apt-get install oracle-java8-installer
echo "deb [arch=amd64] http://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list curl https://bazel.io/bazel-release.pub.gpg | sudo apt-key add -
之后回到之前的Tensorflow安装教程页面:https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md
点击链接: installer for your system,跳转到Bazel的下载页面:
下载bazel-0.3.2-installer-linux-x86_64.sh到桌面,然后在terminal中输入以下命令
cd /home/***(自己的用户名)/Desktop/ #(这个命令意思是找到刚刚我们用U盘传过来的文件) chmod +x PATH_TO_INSTALL.SH #对.sh文件授权 ./PATH_TO_INSTALL.SH --user #运行.sh文件
在terminal中输入以下命令
sudo apt-get install python-numpy swig python-dev python-wheel #安装第三方库 sudo apt-get install git git clone git://github.com/numpy/numpy.git numpy
在terminal中输入以下命令
git clone https://github.com/tensorflow/tensorflow
特别注意,我使用的是tensorflow 0.11版本,该版本要求cuda 7.5 以上,cuDNN v5。
默认下载目录是在/home下
还是刚刚的网址
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/g3doc/get_started/os_setup.md
在terminal中输入以下命令:
cd ~/tensorflow #切换到tensorflow文件夹
./configure #执行configure文件
然后按照下图选项进行操作:
在terminal中输入以下命令:
bazel build -c opt //tensorflow/tools/pip_package:build_pip_package bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg sudo pip install /home/***(你自己的用户名)/Desktop/tensorflow-0.11.0rc1-cp27-none-linux_x86_64.whl
bazel build -c opt //tensorflow/tools/pip_package:build_pip_package # To build with GPU support: bazel build -c opt --config=cuda //tensorflow/tools/pip_package:build_pip_package mkdir _python_build cd _python_build ln -s ../bazel-bin/tensorflow/tools/pip_package/build_pip_package.runfiles/org_tensorflow/* . ln -s ../tensorflow/tools/pip_package/* . python setup.py develop
说明:在编译可能需要花费很长时间,慢慢等就行了,或许我的电脑配置太低,等了大半天才编译完。
此时恭喜你,已经完成了安装
这里进行测试,如果你能跟我看到同样的画面,那恭喜你成功配置GPU版的tensorflow啦!
$ cd tensorflow/models/image/mnist
$ python convolutional.py
在ubuntu14.04安装N卡驱动后,会出现无法显示登录界面或者循环登录的问题。这主要是显卡不兼容,具体解决思路可以参考google上的解决方案,关键词 ubuntu login loop。
经过测试,网上的教程对我都不适用,无奈转向ubuntu16.04
因为这个教程是我安装成功之后写的,其中难免遗忘某些库的安装,例如Git、pip这些库,安装过程很简单,具体可以google。
在执行./configure 或者设置tensorflow环境时,如果出现无法找到某个库的路径,那么检查是否正确的设置了cuda的环境变量,具体参考 4.1节。
说明:转载自
http://blog.csdn.net/zhaoyu106/article/details/52793183
标签:登录界面 nis date evel 不兼容 变量 nload 环境 更改
原文地址:http://www.cnblogs.com/zhaopengcheng/p/6012587.html