标签:栈溢出 释放 lock hello 返回结果 ase evo 编程 result
函数
现在老板让你写一个监控程序,监控服务器的系统状况,当cpu\memory\disk等指标的使用量超过阀值时即发邮件报警,
你掏空了所有的知识量,写出了以下代码
while True: if cpu利用率 > 90%: #发送邮件提醒 连接邮箱服务器 发送邮件 关闭连接 if 硬盘使用空间 > 90%: #发送邮件提醒 连接邮箱服务器 发送邮件 关闭连接 if 内存占用 > 80%: #发送邮件提醒 连接邮箱服务器 发送邮件 关闭连接
上面的代码实现了功能,但即使是邻居老王也看出了端倪,老王亲切的摸了下你家儿子的脸蛋,说,你这个重复代码太多了,每次报警都要重写一段发邮件的代码,太low了,这样干存在2个问题:
你觉得老王说的对,你也不想写重复代码,但又不知道怎么搞,老王好像看出了你的心思,此时他抱起你儿子,笑着说,其实很简单,只需要把重复的代码提取出来,放在一个公共的地方,起个名字,以后谁想用这段代码,就通过这个名字调用就行了,如下
def 发送邮件(内容) #发送邮件提醒 连接邮箱服务器 发送邮件 关闭连接 while True: if cpu利用率 > 90%: 发送邮件(‘CPU报警‘) if 硬盘使用空间 > 90%: 发送邮件(‘硬盘报警‘) if 内存占用 > 80%: 发送邮件(‘内存报警‘)
函数一词来源于数学,但编程中的「函数」概念,与数学中的函数是有很大不同的,具体区别,我们后面会讲,编程中的函数在英文中也有很多不同的叫法。在BASIC中叫做subroutine(子过程或子程序),在Pascal中叫做procedure(过程)和function,在C中只有function,在Java里面叫做method。
特性:
def sayhi():#函数名 print("Hello, I‘m nobody!") sayhi() #调用函数
可以带参数
#下面这段代码 a,b = 5,8 c = a**b print(c) #改成用函数写 def calc(x,y): res = x**y return res #返回函数执行结果 c = calc(a,b) #结果赋值给c变量 print(c)
形参变量只有在被调用时才分配内存单元,在调用结束时,即刻释放所分配的内存单元。因此,形参只在函数内部有效。函数调用结束返回主调用函数后则不能再使用该形参变量
实参可以是常量、变量、表达式、函数等,无论实参是何种类型的量,在进行函数调用时,它们都必须有确定的值,以便把这些值传送给形参。因此应预先用赋值,输入等办法使参数获得确定值
默认参数
看下面代码
def stu_register(name,age,country,course): print("----注册学生信息------") print("姓名:",name) print("age:",age) print("国籍:",country) print("课程:",course) stu_register("王山炮",22,"CN","python_devops") stu_register("张叫春",21,"CN","linux") stu_register("刘老根",25,"CN","linux")
发现 country 这个参数 基本都 是"CN", 就像我们在网站上注册用户,像国籍这种信息,你不填写,默认就会是 中国, 这就是通过默认参数实现的,把country变成默认参数非常简单
def stu_register(name,age,course,country="CN"):
这样,这个参数在调用时不指定,那默认就是CN,指定了的话,就用你指定的值。
另外,你可能注意到了,在把country变成默认参数后,我同时把它的位置移到了最后面,为什么呢?
正常情况下,给函数传参数要按顺序,不想按顺序就可以用关键参数,只需指定参数名即可,但记住一个要求就是,关键参数必须放在位置参数之后。
stu_register(age=22,name=‘alex‘,course="python",)
非固定参数
若你的函数在定义时不确定用户想传入多少个参数,就可以使用非固定参数
def stu_register(name,age,*args): # *args 会把多传入的参数变成一个元组形式 print(name,age,args) stu_register("Alex",22) #输出 #Alex 22 () #后面这个()就是args,只是因为没传值,所以为空 stu_register("Jack",32,"CN","Python") #输出 # Jack 32 (‘CN‘, ‘Python‘)
还可以有一个**kwargs
def stu_register(name,age,*args,**kwargs): # *kwargs 会把多传入的参数变成一个dict形式 print(name,age,args,kwargs) stu_register("Alex",22) #输出 #Alex 22 () {}#后面这个{}就是kwargs,只是因为没传值,所以为空 stu_register("Jack",32,"CN","Python",sex="Male",province="ShanDong") #输出 # Jack 32 (‘CN‘, ‘Python‘) {‘province‘: ‘ShanDong‘, ‘sex‘: ‘Male‘}
name = "Alex Li" def change_name(name): print("before change:",name) name = "金角大王,一个有Tesla的男人" print("after change", name) change_name(name) print("在外面看看name改了么?",name)
输出
before change: Alex Li
after change 金角大王,一个有Tesla的男人
在外面看看name改了么? Alex Li
全局与局部变量
要想获取函数的执行结果,就可以用return语句把结果返回
注意:
看上面的标题的意思是,函数还能套函数?of course
name = "Alex" def change_name(): name = "Alex2" def change_name2(): name = "Alex3" print("第3层打印",name) change_name2() #调用内层函数 print("第2层打印",name) change_name() print("最外层打印",name)
此时,在最外层调用change_name2()会出现什么效果?
没错, 出错了, 为什么呢?
在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。
def calc(n): print(n) if int(n/2) ==0: return n return calc(int(n/2)) calc(10) 输出: 10 5 2 1
递归特性:
1. 必须有一个明确的结束条件
2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少
3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)
堆栈扫盲http://www.cnblogs.com/lln7777/archive/2012/03/14/2396164.html
递归函数实际应用案例,二分查找
data = [1, 3, 6, 7, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 30, 32, 33, 35] def binary_search(dataset,find_num): print(dataset) if len(dataset) >1: mid = int(len(dataset)/2) if dataset[mid] == find_num: #find it print("找到数字",dataset[mid]) elif dataset[mid] > find_num :# 找的数在mid左面 print("\033[31;1m找的数在mid[%s]左面\033[0m" % dataset[mid]) return binary_search(dataset[0:mid], find_num) else:# 找的数在mid右面 print("\033[32;1m找的数在mid[%s]右面\033[0m" % dataset[mid]) return binary_search(dataset[mid+1:],find_num) else: if dataset[0] == find_num: #find it print("找到数字啦",dataset[0]) else: print("没的分了,要找的数字[%s]不在列表里" % find_num) binary_search(data,66)
匿名函数就是不需要显式的指定函数
#这段代码 def calc(n): return n**n print(calc(10)) #换成匿名函数 calc = lambda n:n**n print(calc(10))
你也许会说,用上这个东西没感觉有毛方便呀, 。。。。呵呵,如果是这么用,确实没毛线改进,不过匿名函数主要是和其它函数搭配使用的呢,如下
res = map(lambda x:x**2,[1,5,7,4,8]) for i in res: print(i)
输出
1
25
49
16
64
函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计。函数就是面向过程的程序设计的基本单元。
函数式编程中的函数这个术语不是指计算机中的函数(实际上是Subroutine),而是指数学中的函数,即自变量的映射。也就是说一个函数的值仅决定于函数参数的值,不依赖其他状态。比如sqrt(x)函数计算x的平方根,只要x不变,不论什么时候调用,调用几次,值都是不变的。
Python对函数式编程提供部分支持。由于Python允许使用变量,因此,Python不是纯函数式编程语言。
一、定义
简单说,"函数式编程"是一种"编程范式"(programming paradigm),也就是如何编写程序的方法论。
主要思想是把运算过程尽量写成一系列嵌套的函数调用。举例来说,现在有这样一个数学表达式:
(1 + 2) * 3 - 4
传统的过程式编程,可能这样写:
var a = 1 + 2;
var b = a * 3;
var c = b - 4;
函数式编程要求使用函数,我们可以把运算过程定义为不同的函数,然后写成下面这样:
var result = subtract(multiply(add(1,2), 3), 4);
这段代码再演进以下,可以变成这样
add(1,2).multiply(3).subtract(4)
这基本就是自然语言的表达了。再看下面的代码,大家应该一眼就能明白它的意思吧:
merge([1,2],[3,4]).sort().search("2")
因此,函数式编程的代码更容易理解。
要想学好函数式编程,不要玩py,玩Erlang,Haskell, 好了,我只会这么多了。。。
变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。
def add(x,y,f): return f(x) + f(y) res = add(3,-6,abs) print(res)
内置参数详解 https://docs.python.org/3/library/functions.html?highlight=built#ascii
有以下员工信息表
当然此表你在文件存储时可以这样表示
1,Alex Li,22,13651054608,IT,2013-04-01
现需要对这个员工信息文件,实现增删改查操作
注意:以上需求,要充分使用函数,请尽你的最大限度来减少重复代码!
标签:栈溢出 释放 lock hello 返回结果 ase evo 编程 result
原文地址:http://www.cnblogs.com/brucetang/p/6032516.html