标签:飞机 游戏 意图 技术 xxxx 并且 部分 精确 定义
参考源地址http://xxxxxfsadf.iteye.com/blog/540669
在飞行射击游戏中,我们的飞机大多都是三角形的,我们可以用三角形作近似的边界框。现在我们假设飞机是一个正三角形(或等要三角形,我想如果谁把飞机设计成左右不对称的怪物,那他的审美观一定有问题),我的飞机是正着的、向上飞的三角形,敌人的飞机是倒着的、向下飞的三角形,且飞机不会旋转(大部分游戏中都是这样的)。我们可以这样定义飞机:中心点O(Xo,Yo),三个顶点P0(X0,Y0)、P1(X1,Y1)、P2(X2,Y2)。中心点为正三角形的中心点,即中心点到三个顶点的距离相等。接下来的问题是怎样确定两个三角形互相干扰了呢?嗯,现在我们接触到问题的实质了。如果你学过平面解析几何,我相信你可以想出许多方法解决这个问题。判断一个三角形的各个顶点是否在另一个三角形里面,看起来是个不错的方法,你可以这样做,但我却发现一个小问题:一个三角形的顶点没有在另一个三角形的里面,却可能发生了碰撞,因为另一个三角形的顶点在这个三角形的里面,所以要判断两次,这很麻烦。有没有一次判断就可以的方法?我们把三角形放到极坐标平面中,中心点为原点,水平线即X轴为零度角。我们发现三角形成了这个样子:在每个角度我们都可以找到一个距离,用以描述三角形的边。既然我们找到了边到中心点的距离,那就可以用这个距离来检测碰撞。如图一,两个三角形中心点坐标分别为(Xo,Yo)和(Xo1,Yo1),由这两个点的坐标求出两点的距离及两点连线和X轴的夹角θ,再由θ求出中心点连线与三角形边的交点到中心点的距离,用这个距离与两中心点距离比较,从而判断两三角形是否碰撞。因为三角形左右对称,所以θ取-90~90度区间就可以了。哈,现在问题有趣多了,-90~90度区间正是正切函数的定义域,求出θ之后再找对应的边到中心点的距离就容易多了,利用几何知识,如图二,将三角形的边分为三部分,即图2中红绿蓝三部分,根据θ在那一部分而分别对待。用正弦定理求出边到中心点的距离,即图2中浅绿色线段的长度。但是,如果飞机每次移动都这样判断一次,效率仍然很低。我们可以结合半径法来解决,先用半径法判断是否可能发生碰撞,如果可能发生碰撞,再用上面的方法精确判断是不是真的发生了碰撞,这样基本就可以了。如果飞机旋转了怎么办呢,例如,如图三所示飞机旋转了一个角度α,仔细观察图三会发现,用(θ-α)就可以求出边到中心点的距离,这时你要注意边界情况,即(θ-α)可能大于90度或小于-90度。啰罗嗦嗦说了这么多,不知道大家明白了没有。我编写了一个简单的例程,用于说明我的意图。在例子中假设所有飞机的大小都一样,并且没有旋转。
标签:飞机 游戏 意图 技术 xxxx 并且 部分 精确 定义
原文地址:http://www.cnblogs.com/wangyanlin/p/6052818.html