标签:存储结构 引用 双向链表的实现 ddd 尾插法 判断 性能 set 表单
双向链表(double linked list): 是在单表单的每个结点中,再设置一个指向前驱结点的指针域。因此,在双向链表中的结点都有两个指针域,一个指向前驱,一个指向后继。
typedef struts DulNode{
Element data;
Struct DulNode *prior;前驱指针
Struct DulNode *next;后继指针
}DulDouble, *DulLinkList;
假设结点为s,要将结点插入到结点p和p->next中,我们需要下面几步:
s.prev = p;
s.next = p.next;
p.next.prev = s;
p.next = s;
总结起来就是:先搞定s的前驱后继,再搞定后结点的前驱,最后解决前驱结点的后继
要删除p结点,只需要两个步骤:
p.next.prev = p.prev;
p.prev.next = p.next;
free(p);
相对于单链表,双向链表多了一个指针域,空间上要占用略多一点,但它有很好的对称性,使得对某个结点的前后结点操作更容易,可以提高算法的时间性能,这是牺牲空间换取的。
Java程序实现双链表:
package com.aclie.dataStructe4.sqeList; public class MyDoubleLinkList { private int length =0;//当前长度 private Node head;//头结点 private Node tail;//当前结点结点 public MyDoubleLinkList(){ initLink(); } public void initLink(){ head = new Node(null); tail = new Node(null); this.head = tail; length++; } //获取链表长度 public int getSize(){ return length; } //判断链表是否为空 public boolean getEmpty(){ return getSize()==0; } //根据索引查找元素 从第一个有效值开始 public Node getNode(int index){ Node p; if(index < 0 || index > length ){ System.out.println("参数错误"); } if(index < this.length/2){ p = this.head; for(int i=0; i<index; i++){ p = p.next; } }else{ p = this.tail; for(int i= length; i>index;i--){ p = p.prev; } } return p; } public Object getData(int index){ return getNode(index).data; } //在头结点处插入 public boolean addHead(Object e){ //前驱引用为null,后继为node Node node = new Node(e, null, this.head); //改变头结点的前驱后继 this.head.prev = node; this.head = node; if(tail == null){ tail = this.head; } length++; return true; } //在尾结点插入 public boolean addTail(Object e){ if(this.head == null){ this.head = new Node(e,null,null); this.tail = this.head; }else{ Node node = new Node(e,this.tail,null); this.tail.next = node; this.tail = node; } length++; return true; } //在指定位置插入元素 public boolean addData(int index,Object ele){ if(index <0 || index > this.length){ System.out.println("参数错误"); } if(this.head == null){ this.addTail(ele);//用尾插法 }else{ if(index == 0){ addHead(ele);//用头插法 }else{ Node p = this.getNode(index);//要插入处的结点 Node n = p.next; Node node = new Node(ele,p,n);//要插入的结点 n.prev = node; p.next = node; length ++; } } return true; } public void removeData(int index){ if(index < 0 || index > length){ System.out.println("参数错误"); }else{ Node del = null; if(index == 0){ del = this.head; this.head = this.head.next; this.head.prev = null; length--; }else if(index == (length-1)){ Node p = this.getNode(index-1);//得到要删除结点的前驱结点 del = p.next;//要删除的结点 p.next = del.next; if(del.next != null){ del.next.prev = p; } del.next = null; del.prev = null; length --; this.tail.next = null; this.tail.prev = p; this.tail = p; } else{ Node p = this.getNode(index-1);//要删除结点的前驱结点 del = p.next;//要删除的结点 p.next = del.next; if(del.next != null){ del.next.prev = p; } del.prev = null; del.next = null; length--; } } } //打印所有链表中的元素 public void print(){ Node current = this.head; while(current != null){ System.out.println(current.data); current = current.next; } } //反向打印链表 public void reversePrint(){ Node current = this.tail; while(current != null){ System.out.println(current.data); current = current.prev; } } public static void main(String args[]){ MyDoubleLinkList linkList = new MyDoubleLinkList(); linkList.addHead("aaaa"); // System.out.println(linkList.getData(1)); linkList.addTail("bbbb"); // System.out.println(linkList.getData(3)); linkList.addData(2, "eeee"); // linkList.print(); linkList.removeData(2); linkList.print(); System.out.println("....."); linkList.reversePrint(); } } class Node{ Node prev;//指针域中前驱 Node next;//指针域中后继 Object data;//数据域 public Node(Node current){ prev = current; next = current; } //双链表前驱后继及数字域 public Node(Object d, Node p,Node n){ this.data = d; this.prev = p; this.next = n; } public Node getPrev() { return prev; } public void setPrev(Node prev) { this.prev = prev; } public Node getNext() { return next; } public void setNext(Node next) { this.next = next; } }
标签:存储结构 引用 双向链表的实现 ddd 尾插法 判断 性能 set 表单
原文地址:http://www.cnblogs.com/snowwang/p/6074577.html