标签:round 实战 https ack builder dex 卡顿 剖析 而且
用户对卡顿的感知, 主要来源于界面的刷新. 而界面的性能主要是依赖于设备的UI渲染性能. 如果我们的UI设计过于复杂, 或是实现不够好, 设备又不给力, 界面就会像卡住了一样, 给用户卡顿的感觉.
在剖析卡顿的原因之前, 我们先来了解下Android中著名的"16ms"原则:
Android系统每隔16ms会发出VSYNC信号重绘我们的界面(Activity).
为什么是16ms, 因为Android设定的刷新率是60FPS(Frame Per Second), 也就是每秒60帧的刷新率, 约合16ms刷新一次.
就像是这样的:
这就意味着, 我们需要在16ms内完成下一次要刷新的界面的相关运算, 以便界面刷新更新. 然而, 如果我们无法在16ms内完成此次运算会怎样呢?
例如, 假设我们更新屏幕的背景图片, 需要24ms来做这次运算. 当系统在第一个16ms时刷新界面, 然而我们的运算还没有结束, 无法绘出图片. 当系统隔16ms再发一次VSYNC信息重绘界面时, 用户才会看到更新后的图片. 也就是说用户是32ms后看到了这次刷新(注意, 并不是24ms). 这就是传说中的丢帧(dropped frame):
dropped frame
丢帧给用户的感觉就是卡顿, 而且如果运算过于复杂, 丢帧会更多, 导致界面常常处于停滞状态, 卡到爆.
那么会有哪些常见的情况会导致运算超过16ms, 进而丢帧, 让用户觉得卡顿呢?
一般来说, 会有以下几种情况导致卡顿这种性能问题, 我们逐一看下:
上节有说, 界面性能取决于UI渲染性能. 我们可以理解为UI渲染的整个过程是由CPU和GPU两个部分协同完成的.
其中, CPU负责UI布局元素的Measure, Layout, Draw等相关运算执行. GPU负责栅格化(rasterization), 将UI元素绘制到屏幕上.
如果我们的UI布局层次太深, 或是自定义控件的onDraw中有复杂运算, CPU的相关运算就可能大于16ms, 导致卡顿.
这个时候, 我们需要借助Hierarchy Viewer这个工具来帮我们分析布局了. Hierarchy Viewer不仅可以以图形化树状结构的形式展示出UI层级, 还对每个节点给出了三个小圆点, 以指示该元素Measure, Layout, Draw的耗时及性能.
具体请参考App优化之Layout怎么摆.
上节说的CPU方面的, 关于GPU的绘制, 如果我们的界面存在Overdraw, 也可能导致卡顿.
Overdraw: 用来描述一个像素在屏幕上多少次被重绘在一帧上.
通俗的说: 理想情况下, 每屏每帧上, 每个像素点应该只被绘制一次, 如果有多次绘制, 就是Overdraw, 过度绘制了.
Android系统提供了可视化的方案来让我们很方便的查看overdraw的现象:
在"系统设置"-->"开发者选项"-->"调试GPU过度绘制"中开启调试:
此时界面可能会有五种颜色标识:
一般来说, 蓝色是可接受的, 是性能优的.
上面有言, 所谓Overdraw, 就是在一个像素点上绘制了多次. 常见的就是:
还是以GithubApp这个App的代码为例调试, 打开应用, 展示是这样的:
可以看到是中间列表这块overdraw比较严重. 查看代码发现:
fragment_trending_container.xml中ViewPager设置了背景:
<android.support.v4.view.ViewPager
android:id="@+id/view_pager"
android:background="@color/md_white_1000"
android:layout_width="match_parent"
android:layout_height="match_parent"/>
而ViewPager中的fragment又设置了背景:
<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.widget.SwipeRefreshLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/refresh_layout"
android:background="@color/md_white_1000"
android:layout_width="match_parent"
android:layout_height="match_parent">
...
</android.support.v4.widget.SwipeRefreshLayout
完整代码请查看Github上源码, 本文分析时commit截止到b01b5793.
删除外层ViewPager的背景再看:
可以发现中间列表区域已经不再是红色了, 但是也没有达到蓝色这个可以接受的层级. 这是因为我们的Activity默认情况下, theme会给window设置一个纯色的背景. 因为我们这里不想使用这个默认的背景,故而给layout加了一层背景, 导致了多重绘制背景.
当然我们也可以自定义主题, 将theme的window background设置成我们想要的, 而不在布局中设置.
可以通过如下方式去掉window的背景.
设置主题:
<item name="android:windowBackground">@null</item>
或是代码设置, 在onCreate中:
getWindow().setBackgroundDrawable(null);
此时我们看到的效果:
已基本达到优化水平.
以上旨在提供分析方法和思路.
Overdraw主要原因是背景的多重绘制, 或是不可见的View在背后绘制等, 但不仅限于此.
如上文ANR相关分析中就说到UI线程的复杂运算会造成UI无响应, 当然更多的是造成UI响应停滞, 卡顿.
产生ANR已经是卡顿的极致了, 具体分析可以参看App优化之ANR详解一文.
关于运算阻塞导致的卡顿的分析, 可以使用Traceview这个工具.
具体Traceview的介绍, 以及实战分析, 可以参考App优化之提升你的App启动速度之理论基础和App优化之提升你的App启动速度之实例挑战.
在这里需要提下我们在性能分析工具中提到的StrictMode.
StrictMode用来基于线程或VM设置一些策略, 一旦检测到策略违例, 控制台将输出一些警告,包含一个trace信息展示你的应用在何处出现问题.
通常用来检测主线程中的磁盘读写或网络访问等耗时操作.
在Application或是Activity的onCreate中开启StrictMode:
public void onCreate() {
if (BuildConfig.DEBUG) {
// 针对线程的相关策略
StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder()
.detectDiskReads()
.detectDiskWrites()
.detectNetwork() // or .detectAll() for all detectable problems
.penaltyLog()
.build());
// 针对VM的相关策略
StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder()
.detectLeakedSqlLiteObjects()
.detectLeakedClosableObjects()
.penaltyLog()
.penaltyDeath()
.build());
}
super.onCreate();
}
如果你的线程出了问题, 控制台会有警告输出, 可以定位到代码.
相对简单, 在此就不多废话了.
解决UI线程的耗时操作方案, 可以参考ANR详解里面说到的那些线程模式.
上面说的都是处理上的, CPU, GPU相关的. 实际上内存原因也可能会造成应用不流畅, 卡顿的.
说到这, 想起当年配台式机的三大件(CPU, 内存, 显示器)了. 貌似分析App性能也是这几大件啊 :)
为什么说频繁的GC会导致卡顿呢?
简而言之, 就是执行GC操作的时候,任何线程的任何操作都会需要暂停,等待GC操作完成之后,其他操作才能够继续运行, 故而如果程序频繁GC, 自然会导致界面卡顿.
以下内容参考自Android Performance Patterns:Memory Churn and Performance. 需FQ
导致频繁GC有两个原因:
这些GC操作可能会造成上面说到的丢帧, 如下:
就会让用户感知到卡顿了.
一般来说瞬间大量产生对象一般是因为我们在代码的循环中new对象, 或是在onDraw中创建对象等. 所以说这些地方是我们尤其需要注意的...
标签:round 实战 https ack builder dex 卡顿 剖析 而且
原文地址:http://www.cnblogs.com/benchao/p/6081964.html