标签:开发 强制 private 等于 字段 调用 setattr index stat
Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的。本章节我们将详细介绍Python的面向对象编程。
如果你以前没有接触过面向对象的编程语言,那你可能需要先了解一些面向对象语言的一些基本特征,在头脑里头形成一个基本的面向对象的概念,这样有助于你更容易的学习Python的面向对象编程。
接下来我们先来简单的了解下面向对象的一些基本特征。
面向对象编程——Object Oriented Programming,简称OOP,是一种程序设计思想。OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数。
面向过程的程序设计把计算机程序视为一系列的命令集合,即一组函数的顺序执行。为了简化程序设计,面向过程把函数继续切分为子函数,即把大块函数通过切割成小块函数来降低系统的复杂度。
而面向对象的程序设计把计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递。
在Python中,所有数据类型都可以视为对象,当然也可以自定义对象。自定义的对象数据类型就是面向对象中的类(Class)的概念。
面向对象的设计思想是抽象出Class,根据Class创建Instance。
面向对象的抽象程度又比函数要高,因为一个Class既包含数据,又包含操作数据的方法。
面向过程编程最易被初学者接受,其往往用一长段代码来实现指定功能,开发过程中最常见的操作就是粘贴复制,即:将之前实现的代码块复制到现需功能处。
和其它编程语言相比,Python 在尽可能不增加新的语法和语义的情况下加入了类机制。
Python中的类提供了面向对象编程的所有基本功能:类的继承机制允许多个基类,派生类可以覆盖基类中的任何方法,方法中可以调用基类中的同名方法。
对象可以包含任意数量和类型的数据。
面向对象编程是一种编程方式,此编程方式的落地需要使用 “类” 和 “对象” 来实现,所以,面向对象编程其实就是对 “类” 和 “对象” 的使用。
类就是一个模板,模板里可以包含多个函数,函数里实现一些功能
对象则是根据模板创建的实例,通过实例对象可以执行类中的函数
ps:类中的函数第一个参数必须是self(详细见:类的三大特性之封装)
类中定义的函数叫做 “方法”
1
2
3
4
5
6
7
8
9
10
11
12
13
|
# 创建类 class Foo: def Bar( self ): print ‘Bar‘ def Hello( self , name): print ‘i am %s‘ % name # 根据类Foo创建对象obj obj = Foo() obj.Bar() #执行Bar方法 obj.Hello( ‘wupeiqi‘ ) #执行Hello方法 |
诶,你在这里是不是有疑问了?使用函数式编程和面向对象编程方式来执行一个“方法”时函数要比面向对象简便
观察上述对比答案则是肯定的,然后并非绝对,场景的不同适合其的编程方式也不同。
总结:函数式的应用场景 --> 各个函数之间是独立且无共用的数据
面向对象的三大特性是指:封装、继承和多态。
一、封装
封装,顾名思义就是将内容封装到某个地方,以后再去调用被封装在某处的内容。
所以,在使用面向对象的封装特性时,需要:
第一步:将内容封装到某处
self 是一个形式参数,当执行 obj1 = Foo(‘wupeiqi‘, 18 ) 时,self 等于 obj1
当执行 obj2 = Foo(‘alex‘, 78 ) 时,self 等于 obj2
所以,内容其实被封装到了对象 obj1 和 obj2 中,每个对象中都有 name 和 age 属性,在内存里类似于下图来保存。
第二步:从某处调用被封装的内容
调用被封装的内容时,有两种情况:
1、通过对象直接调用被封装的内容
上图展示了对象 obj1 和 obj2 在内存中保存的方式,根据保存格式可以如此调用被封装的内容:对象.属性名
class Foo: def __init__(self, name, age): self.name = name self.age = age obj1 = Foo(‘wupeiqi‘, 18) print obj1.name # 直接调用obj1对象的name属性 print obj1.age # 直接调用obj1对象的age属性 obj2 = Foo(‘alex‘, 73) print obj2.name # 直接调用obj2对象的name属性 print obj2.age # 直接调用obj2对象的age属性
2、通过self间接调用被封装的内容
执行类中的方法时,需要通过self间接调用被封装的内容
class Foo: def __init__(self, name, age): self.name = name self.age = age def detail(self): print self.name print self.age obj1 = Foo(‘wupeiqi‘, 18) obj1.detail() # Python默认会将obj1传给self参数,即:obj1.detail(obj1),所以,此时方法内部的 self = obj1,即:self.name 是 wupeiqi ;self.age 是 18 obj2 = Foo(‘alex‘, 73) obj2.detail() # Python默认会将obj2传给self参数,即:obj1.detail(obj2),所以,此时方法内部的 self = obj2,即:self.name 是 alex ; self.age 是 78
综上所述,对于面向对象的封装来说,其实就是使用构造方法将内容封装到 对象 中,然后通过对象直接或者self间接获取被封装的内容。
面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板,比如Student类,而实例是根据类创建出来的一个个具体的“对象”,每个对象都拥有相同的方法,但各自的数据可能不同。
语法格式如下:
class ClassName: <statement-1> . . . <statement-N>
类实例化后,可以使用其属性,实际上,创建一个类之后,可以通过类名访问其属性。
以Student类为例,在Python中,定义类是通过class
关键字:
class Student(object): pass
class
后面紧接着是类名,即Student
,类名通常是大写开头的单词,紧接着是(object)
,表示该类是从哪个类继承下来的,继承的概念我们后面再讲,通常,如果没有合适的继承类,就使用object
类,这是所有类最终都会继承的类。
定义好了Student
类,就可以根据Student
类创建出Student
的实例,创建实例是通过类名+()实现的:
>>> bart = Student() >>> bart <__main__.Student object at 0x10a67a590> >>> Student <class ‘__main__.Student‘>
可以看到,变量bart
指向的就是一个Student
的实例,后面的0x10a67a590
是内存地址,每个object的地址都不一样,而Student
本身则是一个类。
可以自由地给一个实例变量绑定属性,比如,给实例bart
绑定一个name
属性:
>>> bart.name = ‘Bart Simpson‘ >>> bart.name ‘Bart Simpson‘
由于类可以起到模板的作用,因此,可以在创建实例的时候,把一些我们认为必须绑定的属性强制填写进去。通过定义一个特殊的__init__
方法,在创建实例的时候,就把name
,score
等属性绑上去:
class Student(object): def __init__(self, name, score): self.name = name self.score = score
注意到__init__
方法的第一个参数永远是self
,表示创建的实例本身,因此,在__init__
方法内部,就可以把各种属性绑定到self
,因为self
就指向创建的实例本身。
有了__init__
方法,在创建实例的时候,就不能传入空的参数了,必须传入与__init__
方法匹配的参数,但self
不需要传,Python解释器自己会把实例变量传进去:
>>> bart = Student(‘Bart Simpson‘, 59) >>> bart.name ‘Bart Simpson‘ >>> bart.score 59
和普通的函数相比,在类中定义的函数只有一点不同,就是第一个参数永远是实例变量self
,并且,调用时,不用传递该参数。除此之外,类的方法和普通函数没有什么区别,所以,你仍然可以用默认参数、可变参数、关键字参数和命名关键字参数。
面向对象编程的一个重要特点就是数据封装。在上面的Student
类中,每个实例就拥有各自的name
和score
这些数据。我们可以通过函数来访问这些数据,比如打印一个学生的成绩:
>>> def print_score(std): ... print(‘%s: %s‘ % (std.name, std.score)) ... >>> print_score(bart) Bart Simpson: 59
但是,既然Student
实例本身就拥有这些数据,要访问这些数据,就没有必要从外面的函数去访问,可以直接在Student
类的内部定义访问数据的函数,这样,就把“数据”给封装起来了。这些封装数据的函数是和Student
类本身是关联起来的,我们称之为类的方法:
class Student(object): def __init__(self, name, score): self.name = name self.score = score def print_score(self): print(‘%s: %s‘ % (self.name, self.score))
要定义一个方法,除了第一个参数是self
外,其他和普通函数一样。要调用一个方法,只需要在实例变量上直接调用,除了self
不用传递,其他参数正常传入:
>>> bart.print_score() Bart Simpson: 59
这样一来,我们从外部看Student
类,就只需要知道,创建实例需要给出name
和score
,而如何打印,都是在Student
类的内部定义的,这些数据和逻辑被“封装”起来了,调用很容易,但却不用知道内部实现的细节。
封装的另一个好处是可以给Student
类增加新的方法,比如get_grade
:
class Student(object): ... def get_grade(self): if self.score >= 90: return ‘A‘ elif self.score >= 60: return ‘B‘ else: return ‘C‘
同样的,get_grade
方法可以直接在实例变量上调用,不需要知道内部实现细节:
>>> bart.get_grade() ‘C‘
类是创建实例的模板,而实例则是一个一个具体的对象,各个实例拥有的数据都互相独立,互不影响;
方法就是与实例绑定的函数,和普通函数不同,方法可以直接访问实例的数据;
通过在实例上调用方法,我们就直接操作了对象内部的数据,但无需知道方法内部的实现细节。
和静态语言不同,Python允许对实例变量绑定任何数据,也就是说,对于两个实例变量,虽然它们都是同一个类的不同实例,但拥有的变量名称都可能不同。
但是,从前面Student类的定义来看,外部代码还是可以自由地修改一个实例的name
、score
属性:
>>> bart = Student(‘Bart Simpson‘, 98) >>> bart.score 98 >>> bart.score = 59 >>> bart.score 59
如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__
,在Python中,实例的变量名如果以__
开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,所以,我们把Student类改一改:
class Student(object): def __init__(self, name, score): self.__name = name self.__score = score def print_score(self): print(‘%s: %s‘ % (self.__name, self.__score))
改完后,对于外部代码来说,没什么变动,但是已经无法从外部访问实例变量.__name
和实例变量.__score
了:
>>> bart = Student(‘Bart Simpson‘, 98) >>> bart.__name Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: ‘Student‘ object has no attribute ‘__name‘
这样就确保了外部代码不能随意修改对象内部的状态,这样通过访问限制的保护,代码更加健壮。
但是如果外部代码要获取name和score怎么办?可以给Student类增加get_name
和get_score
这样的方法:
class Student(object): ... def get_name(self): return self.__name def get_score(self): return self.__score
如果又要允许外部代码修改score怎么办?可以再给Student类增加set_score
方法:
class Student(object): ... def set_score(self, score): self.__score = score
你也许会问,原先那种直接通过bart.score = 59
也可以修改啊,为什么要定义一个方法大费周折?因为在方法中,可以对参数做检查,避免传入无效的参数:
class Student(object): ... def set_score(self, score): if 0 <= score <= 100: self.__score = score else: raise ValueError(‘bad score‘)
需要注意的是,在Python中,变量名类似__xxx__
的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用__name__
、__score__
这样的变量名。
有些时候,你会看到以一个下划线开头的实例变量名,比如_name
,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。
双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。不能直接访问__name
是因为Python解释器对外把__name
变量改成了_Student__name
,所以,仍然可以通过_Student__name
来访问__name
变量:
>>> bart._Student__name ‘Bart Simpson‘
但是强烈建议你不要这么干,因为不同版本的Python解释器可能会把__name
改成不同的变量名。
总的来说就是,Python本身没有任何机制阻止你干坏事,一切全靠自觉。
最后注意下面的这种错误写法:
>>> bart = Student(‘Bart Simpson‘, 98) >>> bart.get_name() ‘Bart Simpson‘ >>> bart.__name = ‘New Name‘ # 设置__name变量! >>> bart.__name ‘New Name‘
表面上看,外部代码“成功”地设置了__name
变量,但实际上这个__name
变量和class内部的__name
变量不是一个变量!内部的__name
变量已经被Python解释器自动改成了_Student__name
,而外部代码给bart
新增了一个__name
变量。不信试试:
>>> bart.get_name() # get_name()内部返回self.__name ‘Bart Simpson‘
类对象支持两种操作:属性引用和实例化。
属性引用使用和 Python 中所有的属性引用一样的标准语法:obj.name。
类对象创建后,类命名空间中所有的命名都是有效属性名。所以如果类定义是这样:
#!/usr/bin/python3 class MyClass: """一个简单的类实例""" i = 12345 def f(self): return ‘hello world‘ # 实例化类 x = MyClass() # 访问类的属性和方法 print("MyClass 类的属性 i 为:", x.i) print("MyClass 类的方法 f 输出为:", x.f())
实例化类:
# 实例化类 x = MyClass() # 访问类的属性和方法
以上创建了一个新的类实例并将该对象赋给局部变量 x,x 为空的对象。
执行以上程序输出结果为:
MyClass 类的属性 i 为: 12345 MyClass 类的方法 f 输出为: hello world
很多类都倾向于将对象创建为有初始状态的。因此类可能会定义一个名为 __init__() 的特殊方法(构造方法),像下面这样:
def __init__(self): self.data = []
类定义了 __init__() 方法的话,类的实例化操作会自动调用 __init__() 方法。所以在下例中,可以这样创建一个新的实例:
x = MyClass()
当然, __init__() 方法可以有参数,参数通过 __init__() 传递到类的实例化操作上。例如:
>>> class Complex: ... def __init__(self, realpart, imagpart): ... self.r = realpart ... self.i = imagpart ... >>> x = Complex(3.0, -4.5) >>> x.r, x.i (3.0, -4.5)
在类地内部,使用def关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数self,且为第一个参数:
#!/usr/bin/python3 #类定义 class people: #定义基本属性 name = ‘‘ age = 0 #定义私有属性,私有属性在类外部无法直接进行访问 __weight = 0 #定义构造方法 def __init__(self,n,a,w): self.name = n self.age = a self.__weight = w def speak(self): print("%s 说: 我 %d 岁。" %(self.name,self.age)) # 实例化类 p = people(‘tom‘,10,30) p.speak()
执行以上程序输出结果为:
tom 说: 我 10 岁。
在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类、父类或超类(Base class、Super class)。
继承,面向对象中的继承和现实生活中的继承相同,即:子可以继承父的内容。
例如:
猫可以:喵喵叫、吃、喝、拉、撒
狗可以:汪汪叫、吃、喝、拉、撒
如果我们要分别为猫和狗创建一个类,那么就需要为 猫 和 狗 实现他们所有的功能,如下所示:
伪代码:
class 猫: def 喵喵叫(self): print ‘喵喵叫‘ def 吃(self): # do something def 喝(self): # do something def 拉(self): # do something def 撒(self): # do something class 狗: def 汪汪叫(self): print ‘喵喵叫‘ def 吃(self): # do something def 喝(self): # do something def 拉(self): # do something def 撒(self): # do something 伪代码
上述代码不难看出,吃、喝、拉、撒是猫和狗都具有的功能,而我们却分别的猫和狗的类中编写了两次。如果使用 继承 的思想,如下实现:
动物:吃、喝、拉、撒
猫:喵喵叫(猫继承动物的功能)
狗:汪汪叫(狗继承动物的功能)
伪代码:
class 动物: def 吃(self): # do something def 喝(self): # do something def 拉(self): # do something def 撒(self): # do something # 在类后面括号中写入另外一个类名,表示当前类继承另外一个类 class 猫(动物): def 喵喵叫(self): print ‘喵喵叫‘ # 在类后面括号中写入另外一个类名,表示当前类继承另外一个类 class 狗(动物): def 汪汪叫(self): print ‘喵喵叫‘ 伪代码
实例:
class Animal: def eat(self): print "%s 吃 " %self.name def drink(self): print "%s 喝 " %self.name def shit(self): print "%s 拉 " %self.name def pee(self): print "%s 撒 " %self.name class Cat(Animal): def __init__(self, name): self.name = name self.breed = ‘猫‘ def cry(self): print ‘喵喵叫‘ class Dog(Animal): def __init__(self, name): self.name = name self.breed = ‘狗‘ def cry(self): print ‘汪汪叫‘ # ######### 执行 ######### c1 = Cat(‘小白家的小黑猫‘) c1.eat() c2 = Cat(‘小黑的小白猫‘) c2.drink() d1 = Dog(‘胖子家的小瘦狗‘) d1.eat() 代码实例
所以,对于面向对象的继承来说,其实就是将多个类共有的方法提取到父类中,子类仅需继承父类而不必一一实现每个方法。
注:除了子类和父类的称谓,你可能看到过 派生类 和 基类 ,他们与子类和父类只是叫法不同而已。
学习了继承的写法之后,我们用代码来是上述阿猫阿狗的功能:
class Animal: def eat(self): print "%s 吃 " %self.name def drink(self): print "%s 喝 " %self.name def shit(self): print "%s 拉 " %self.name def pee(self): print "%s 撒 " %self.name class Cat(Animal): def __init__(self, name): self.name = name self.breed = ‘猫‘ def cry(self): print ‘喵喵叫‘ class Dog(Animal): def __init__(self, name): self.name = name self.breed = ‘狗‘ def cry(self): print ‘汪汪叫‘ # ######### 执行 ######### c1 = Cat(‘小白家的小黑猫‘) c1.eat() c2 = Cat(‘小黑的小白猫‘) c2.drink() d1 = Dog(‘胖子家的小瘦狗‘) d1.eat() 代码实例
比如,我们已经编写了一个名为Animal
的class,有一个run()
方法可以直接打印:
class Animal(object): def run(self): print(‘Animal is running...‘)
当我们需要编写Dog
和Cat
类时,就可以直接从Animal
类继承:
class Dog(Animal): pass class Cat(Animal): pass
对于Dog
来说,Animal
就是它的父类,对于Animal
来说,Dog
就是它的子类。Cat
和Dog
类似。
继承有什么好处?最大的好处是子类获得了父类的全部功能。由于Animial
实现了run()
方法,因此,Dog
和Cat
作为它的子类,什么事也没干,就自动拥有了run()
方法:
dog = Dog() dog.run() cat = Cat() cat.run()
运行结果如下:
Animal is running...
Animal is running...
当然,也可以对子类增加一些方法,比如Dog类:
class Dog(Animal): def run(self): print(‘Dog is running...‘) def eat(self): print(‘Eating meat...‘)
继承的第二个好处需要我们对代码做一点改进。你看到了,无论是Dog
还是Cat
,它们run()
的时候,显示的都是Animal is running...
,符合逻辑的做法是分别显示Dog is running...
和Cat is running...
,因此,对Dog
和Cat
类改进如下:
class Dog(Animal): def run(self): print(‘Dog is running...‘) class Cat(Animal): def run(self): print(‘Cat is running...‘)
再次运行,结果如下:
Dog is running... Cat is running...
当子类和父类都存在相同的run()
方法时,我们说,子类的run()
覆盖了父类的run()
,在代码运行的时候,总是会调用子类的run()
。这样,我们就获得了继承的另一个好处:多态。
要理解什么是多态,我们首先要对数据类型再作一点说明。当我们定义一个class的时候,我们实际上就定义了一种数据类型。我们定义的数据类型和Python自带的数据类型,比如str、list、dict没什么两样:
a = list() # a是list类型 b = Animal() # b是Animal类型 c = Dog() # c是Dog类型
判断一个变量是否是某个类型可以用isinstance()
判断:
>>> isinstance(a, list) True >>> isinstance(b, Animal) True >>> isinstance(c, Dog) True
看来a
、b
、c
确实对应着list
、Animal
、Dog
这3种类型。
但是等等,试试:
>>> isinstance(c, Animal) True
>>> isinstance(c, Animal) True
看来c
不仅仅是Dog
,c
还是Animal
!
不过仔细想想,这是有道理的,因为Dog
是从Animal
继承下来的,当我们创建了一个Dog
的实例c
时,我们认为c
的数据类型是Dog
没错,但c
同时也是Animal
也没错,Dog
本来就是Animal
的一种!
所以,在继承关系中,如果一个实例的数据类型是某个子类,那它的数据类型也可以被看做是父类。但是,反过来就不行:
>>> b = Animal() >>> isinstance(b, Dog) False
Dog
可以看成Animal
,但Animal
不可以看成Dog
。
要理解多态的好处,我们还需要再编写一个函数,这个函数接受一个Animal
类型的变量:
def run_twice(animal): animal.run() animal.run()
当我们传入Animal
的实例时,run_twice()
就打印出:
>>> run_twice(Animal()) Animal is running... Animal is running...
当我们传入Dog
的实例时,run_twice()
就打印出:
>>> run_twice(Dog()) Dog is running... Dog is running...
当我们传入Cat
的实例时,run_twice()
就打印出:
>>> run_twice(Cat()) Cat is running... Cat is running...
看上去没啥意思,但是仔细想想,现在,如果我们再定义一个Tortoise
类型,也从Animal
派生:
class Tortoise(Animal): def run(self): print(‘Tortoise is running slowly...‘)
当我们调用run_twice()
时,传入Tortoise
的实例:
>>> run_twice(Tortoise()) Tortoise is running slowly... Tortoise is running slowly...
你会发现,新增一个Animal
的子类,不必对run_twice()
做任何修改,实际上,任何依赖Animal
作为参数的函数或者方法都可以不加修改地正常运行,原因就在于多态。
多态的好处就是,当我们需要传入Dog
、Cat
、Tortoise
……时,我们只需要接收Animal
类型就可以了,因为Dog
、Cat
、Tortoise
……都是Animal
类型,然后,按照Animal
类型进行操作即可。由于Animal
类型有run()
方法,因此,传入的任意类型,只要是Animal
类或者子类,就会自动调用实际类型的run()
方法,这就是多态的意思:
对于一个变量,我们只需要知道它是Animal
类型,无需确切地知道它的子类型,就可以放心地调用run()
方法,而具体调用的run()
方法是作用在Animal
、Dog
、Cat
还是Tortoise
对象上,由运行时该对象的确切类型决定,这就是多态真正的威力:调用方只管调用,不管细节,而当我们新增一种Animal
的子类时,只要确保run()
方法编写正确,不用管原来的代码是如何调用的。这就是著名的“开闭”原则:
对扩展开放:允许新增Animal
子类;
对修改封闭:不需要修改依赖Animal
类型的run_twice()
等函数。
继承还可以一级一级地继承下来,就好比从爷爷到爸爸、再到儿子这样的关系。而任何类,最终都可以追溯到根类object,这些继承关系看上去就像一颗倒着的树。比如如下的继承树:
Python 同样支持类的继承,如果一种语言不支持继承,类就没有什么意义。派生类的定义如下所示:
class DerivedClassName(BaseClassName1): <statement-1> . . . <statement-N>
需要注意圆括号中基类的顺序,若是基类中有相同的方法名,而在子类使用时未指定,python从左至右搜索 即方法在子类中未找到时,从左到右查找基类中是否包含方法。
BaseClassName(示例中的基类名)必须与派生类定义在一个作用域内。除了类,还可以用表达式,基类定义在另一个模块中时这一点非常有用:
class DerivedClassName(modname.BaseClassName):
实例
#!/usr/bin/python3 #类定义 class people: #定义基本属性 name = ‘‘ age = 0 #定义私有属性,私有属性在类外部无法直接进行访问 __weight = 0 #定义构造方法 def __init__(self,n,a,w): self.name = n self.age = a self.__weight = w def speak(self): print("%s 说: 我 %d 岁。" %(self.name,self.age)) #单继承示例 class student(people): grade = ‘‘ def __init__(self,n,a,w,g): #调用父类的构函 people.__init__(self,n,a,w) self.grade = g #覆写父类的方法 def speak(self): print("%s 说: 我 %d 岁了,我在读 %d 年级"%(self.name,self.age,self.grade)) s = student(‘ken‘,10,60,3) s.speak()
执行以上程序输出结果为:
ken 说: 我 10 岁了,我在读 3 年级
那么问题又来了,多继承呢?
1、Python的类可以继承多个类,Java和C#中则只能继承一个类
2、Python的类如果继承了多个类,那么其寻找方法的方式有两种,分别是:深度优先和广度优先
经典类和新式类,从字面上可以看出一个老一个新,新的必然包含了跟多的功能,也是之后推荐的写法,从写法上区分的话,如果 当前类或者父类继承了object类,那么该类便是新式类,否则便是经典类。
经典类多继承:
class D: def bar(self): print ‘D.bar‘ class C(D): def bar(self): print ‘C.bar‘ class B(D): def bar(self): print ‘B.bar‘ class A(B, C): def bar(self): print ‘A.bar‘ a = A() # 执行bar方法时 # 首先去A类中查找,如果A类中没有,则继续去B类中找,如果B类中么有,则继续去D类中找,如果D类中么有,则继续去C类中找,如果还是未找到,则报错 # 所以,查找顺序:A --> B --> D --> C # 在上述查找bar方法的过程中,一旦找到,则寻找过程立即中断,便不会再继续找了 a.bar() 经典类多继承
新式类多继承:
class D(object): def bar(self): print ‘D.bar‘ class C(D): def bar(self): print ‘C.bar‘ class B(D): def bar(self): print ‘B.bar‘ class A(B, C): def bar(self): print ‘A.bar‘ a = A() # 执行bar方法时 # 首先去A类中查找,如果A类中没有,则继续去B类中找,如果B类中么有,则继续去C类中找,如果C类中么有,则继续去D类中找,如果还是未找到,则报错 # 所以,查找顺序:A --> B --> C --> D # 在上述查找bar方法的过程中,一旦找到,则寻找过程立即中断,便不会再继续找了 a.bar() 新式类多继承
经典类:首先去A类中查找,如果A类中没有,则继续去B类中找,如果B类中么有,则继续去D类中找,如果D类中么有,则继续去C类中找,如果还是未找到,则报错
新式类:首先去A类中查找,如果A类中没有,则继续去B类中找,如果B类中么有,则继续去C类中找,如果C类中么有,则继续去D类中找,如果还是未找到,则报错
注意:在上述查找过程中,一旦找到,则寻找过程立即中断,便不会再继续找了
Python同样有限的支持多继承形式。多继承的类定义形如下例:
class DerivedClassName(Base1, Base2, Base3): <statement-1> . . . <statement-N>
需要注意圆括号中父类的顺序,若是父类中有相同的方法名,而在子类使用时未指定,python从左至右搜索 即方法在子类中未找到时,从左到右查找父类中是否包含方法。
#!/usr/bin/python3 #类定义 class people: #定义基本属性 name = ‘‘ age = 0 #定义私有属性,私有属性在类外部无法直接进行访问 __weight = 0 #定义构造方法 def __init__(self,n,a,w): self.name = n self.age = a self.__weight = w def speak(self): print("%s 说: 我 %d 岁。" %(self.name,self.age)) #单继承示例 class student(people): grade = ‘‘ def __init__(self,n,a,w,g): #调用父类的构函 people.__init__(self,n,a,w) self.grade = g #覆写父类的方法 def speak(self): print("%s 说: 我 %d 岁了,我在读 %d 年级"%(self.name,self.age,self.grade)) #另一个类,多重继承之前的准备 class speaker(): topic = ‘‘ name = ‘‘ def __init__(self,n,t): self.name = n self.topic = t def speak(self): print("我叫 %s,我是一个演说家,我演讲的主题是 %s"%(self.name,self.topic)) #多重继承 class sample(speaker,student): a =‘‘ def __init__(self,n,a,w,g,t): student.__init__(self,n,a,w,g) speaker.__init__(self,n,t) test = sample("Tim",25,80,4,"Python") test.speak() #方法名同,默认调用的是在括号中排前地父类的方法
执行以上程序输出结果为:
我叫 Tim,我是一个演说家,我演讲的主题是 Python
对于静态语言(例如Java)来说,如果需要传入Animal
类型,则传入的对象必须是Animal
类型或者它的子类,否则,将无法调用run()
方法。
对于Python这样的动态语言来说,则不一定需要传入Animal
类型。我们只需要保证传入的对象有一个run()
方法就可以了:
class Timer(object): def run(self): print(‘Start...‘)
这就是动态语言的“鸭子类型”,它并不要求严格的继承体系,一个对象只要“看起来像鸭子,走起路来像鸭子”,那它就可以被看做是鸭子。
Python的“file-like object“就是一种鸭子类型。对真正的文件对象,它有一个read()
方法,返回其内容。但是,许多对象,只要有read()
方法,都被视为“file-like object“。许多函数接收的参数就是“file-like object“,你不一定要传入真正的文件对象,完全可以传入任何实现了read()
方法的对象。
继承可以把父类的所有功能都直接拿过来,这样就不必重零做起,子类只需要新增自己特有的方法,也可以把父类不适合的方法覆盖重写。
动态语言的鸭子类型特点决定了继承不像静态语言那样是必须的。
如果你的父类方法的功能不能满足你的需求,你可以在子类重写你父类的方法,实例如下:
#!/usr/bin/python3 class Parent: # 定义父类 def myMethod(self): print (‘调用父类方法‘) class Child(Parent): # 定义子类 def myMethod(self): print (‘调用子类方法‘) c = Child() # 子类实例 c.myMethod() # 子类调用重写方法
执行以上程序输出结果为:
调用子类方法
__private_attrs:两个下划线开头,声明该属性为私有,不能在类地外部被使用或直接访问。在类内部的方法中使用时 self.__private_attrs。
在类地内部,使用def关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数self,且为第一个参数
__private_method:两个下划线开头,声明该方法为私有方法,不能在类地外部调用。在类的内部调用 slef.__private_methods。
类的私有属性实例如下:
#!/usr/bin/python3 class JustCounter: __secretCount = 0 # 私有变量 publicCount = 0 # 公开变量 def count(self): self.__secretCount += 1 self.publicCount += 1 print (self.__secretCount) counter = JustCounter() counter.count() counter.count() print (counter.publicCount) print (counter.__secretCount) # 报错,实例不能访问私有变量
执行以上程序输出结果为:
1 2 2 Traceback (most recent call last): File "test.py", line 16, in <module> print (counter.__secretCount) # 报错,实例不能访问私有变量 AttributeError: ‘JustCounter‘ object has no attribute ‘__secretCount‘
类的私有方法实例如下:
#!/usr/bin/python3 class Site: def __init__(self, name, url): self.name = name # public self.__url = url # private def who(self): print(‘name : ‘, self.name) print(‘url : ‘, self.__url) def __foo(self): # 私有方法 print(‘这是私有方法‘) def foo(self): # 公共方法 print(‘这是公共方法‘) self.__foo() x = Site(‘python‘, ‘www.python.com‘) x.who() # 正常输出 x.foo() # 正常输出 x.__foo() # 报错 #报错,外部不能调用私有方法
Python同样支持运算符重载,我么可以对类的专有方法进行重载,实例如下:
#!/usr/bin/python3 class Vector: def __init__(self, a, b): self.a = a self.b = b def __str__(self): return ‘Vector (%d, %d)‘ % (self.a, self.b) def __add__(self,other): return Vector(self.a + other.a, self.b + other.b) v1 = Vector(2,10) v2 = Vector(5,-2) print (v1 + v2)
以上代码执行结果如下所示:
Vector(7,8)
首先,我们来判断对象类型,使用type()
函数:
基本类型都可以用type()
判断:
>>> type(123) <class ‘int‘> >>> type(‘str‘) <class ‘str‘> >>> type(None) <type(None) ‘NoneType‘>
如果一个变量指向函数或者类,也可以用type()
判断:
>>> type(abs) <class ‘builtin_function_or_method‘> >>> type(a) <class ‘__main__.Animal‘>
但是type()
函数返回的是什么类型呢?它返回对应的Class类型。如果我们要在if
语句中判断,就需要比较两个变量的type类型是否相同:
>>> type(123)==type(456) True >>> type(123)==int True >>> type(‘abc‘)==type(‘123‘) True >>> type(‘abc‘)==str True >>> type(‘abc‘)==type(123) False
判断基本数据类型可以直接写int
,str
等,但如果要判断一个对象是否是函数怎么办?可以使用types
模块中定义的常量:
>>> import types >>> def fn(): ... pass ... >>> type(fn)==types.FunctionType True >>> type(abs)==types.BuiltinFunctionType True >>> type(lambda x: x)==types.LambdaType True >>> type((x for x in range(10)))==types.GeneratorType True
对于class的继承关系来说,使用type()
就很不方便。我们要判断class的类型,可以使用isinstance()
函数。
我们回顾上次的例子,如果继承关系是:
object -> Animal -> Dog -> Husky
那么,isinstance()
就可以告诉我们,一个对象是否是某种类型。先创建3种类型的对象:
>>> a = Animal() >>> d = Dog() >>> h = Husky()
然后,判断:
>>> isinstance(h, Husky) True
没有问题,因为h
变量指向的就是Husky对象。
再判断:
>>> isinstance(h, Dog) True
h
虽然自身是Husky类型,但由于Husky是从Dog继承下来的,所以,h
也还是Dog类型。换句话说,isinstance()
判断的是一个对象是否是该类型本身,或者位于该类型的父继承链上。
因此,我们可以确信,h
还是Animal类型:
>>> isinstance(h, Animal) True
同理,实际类型是Dog的d
也是Animal类型:
>>> isinstance(d, Dog) and isinstance(d, Animal) True
但是,d
不是Husky类型:
>>> isinstance(d, Husky) False
能用type()
判断的基本类型也可以用isinstance()
判断:
>>> isinstance(‘a‘, str) True >>> isinstance(123, int) True >>> isinstance(b‘a‘, bytes) True
并且还可以判断一个变量是否是某些类型中的一种,比如下面的代码就可以判断是否是list或者tuple:
>>> isinstance([1, 2, 3], (list, tuple)) True >>> isinstance((1, 2, 3), (list, tuple)) True
如果要获得一个对象的所有属性和方法,可以使用dir()
函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:
>>> dir(‘ABC‘) [‘__add__‘, ‘__class__‘, ‘__contains__‘, ‘__delattr__‘, ‘__dir__‘, ‘__doc__‘, ‘__eq__‘, ‘__format__‘, ‘__ge__‘, ‘__getattribute__‘, ‘__getitem__‘,
‘__getnewargs__‘, ‘__gt__‘, ‘__hash__‘, ‘__init__‘, ‘__iter__‘, ‘__le__‘, ‘__len__‘, ‘__lt__‘, ‘__mod__‘, ‘__mul__‘, ‘__ne__‘, ‘__new__‘, ‘__reduce__‘,
‘__reduce_ex__‘, ‘__repr__‘, ‘__rmod__‘, ‘__rmul__‘, ‘__setattr__‘, ‘__sizeof__‘, ‘__str__‘, ‘__subclasshook__‘, ‘capitalize‘, ‘casefold‘, ‘center‘,
‘count‘, ‘encode‘, ‘endswith‘, ‘expandtabs‘, ‘find‘, ‘format‘, ‘format_map‘, ‘index‘, ‘isalnum‘, ‘isalpha‘, ‘isdecimal‘, ‘isdigit‘, ‘isidentifier‘,
‘islower‘, ‘isnumeric‘, ‘isprintable‘, ‘isspace‘, ‘istitle‘, ‘isupper‘, ‘join‘, ‘ljust‘, ‘lower‘, ‘lstrip‘, ‘maketrans‘, ‘partition‘, ‘replace‘, ‘rfind‘,
‘rindex‘, ‘rjust‘, ‘rpartition‘, ‘rsplit‘, ‘rstrip‘, ‘split‘, ‘splitlines‘, ‘startswith‘, ‘strip‘, ‘swapcase‘, ‘title‘, ‘translate‘, ‘upper‘, ‘zfill‘]
类似__xxx__
的属性和方法在Python中都是有特殊用途的,比如__len__
方法返回长度。在Python中,如果你调用len()
函数试图获取一个对象的长度,实际上,在len()
函数内部,它自动去调用该对象的__len__()
方法,所以,下面的代码是等价的:
>>> len(‘ABC‘) 3 >>> ‘ABC‘.__len__() 3
我们自己写的类,如果也想用len(myObj)
的话,就自己写一个__len__()
方法:
>>> class MyDog(object): ... def __len__(self): ... return 100 ... >>> dog = MyDog() >>> len(dog) 100
剩下的都是普通属性或方法,比如lower()
返回小写的字符串:
>>> ‘ABC‘.lower() ‘abc‘
仅仅把属性和方法列出来是不够的,配合getattr()
、setattr()
以及hasattr()
,我们可以直接操作一个对象的状态:
>>> class MyObject(object): ... def __init__(self): ... self.x = 9 ... def power(self): ... return self.x * self.x ... >>> obj = MyObject()
紧接着,可以测试该对象的属性:
>>> hasattr(obj, ‘x‘) # 有属性‘x‘吗? True >>> obj.x 9 >>> hasattr(obj, ‘y‘) # 有属性‘y‘吗? False >>> setattr(obj, ‘y‘, 19) # 设置一个属性‘y‘ >>> hasattr(obj, ‘y‘) # 有属性‘y‘吗? True >>> getattr(obj, ‘y‘) # 获取属性‘y‘ 19 >>> obj.y # 获取属性‘y‘ 19
如果试图获取不存在的属性,会抛出AttributeError的错误:
>>> getattr(obj, ‘z‘) # 获取属性‘z‘ Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: ‘MyObject‘ object has no attribute ‘z‘
可以传入一个default参数,如果属性不存在,就返回默认值:
>>> getattr(obj, ‘z‘, 404) # 获取属性‘z‘,如果不存在,返回默认值404 404
也可以获得对象的方法:
>>> hasattr(obj, ‘power‘) # 有属性‘power‘吗? True >>> getattr(obj, ‘power‘) # 获取属性‘power‘ <bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>> >>> fn = getattr(obj, ‘power‘) # 获取属性‘power‘并赋值到变量fn >>> fn # fn指向obj.power <bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>> >>> fn() # 调用fn()与调用obj.power()是一样的 81
通过内置的一系列函数,我们可以对任意一个Python对象进行剖析,拿到其内部的数据。要注意的是,只有在不知道对象信息的时候,我们才会去获取对象信息。如果可以直接写:
sum = obj.x + obj.y
就不要写:
sum = getattr(obj, ‘x‘) + getattr(obj, ‘y‘)
一个正确的用法的例子如下:
def readImage(fp): if hasattr(fp, ‘read‘): return readData(fp) return None
假设我们希望从文件流fp中读取图像,我们首先要判断该fp对象是否存在read方法,如果存在,则该对象是一个流,如果不存在,则无法读取。hasattr()
就派上了用场。
请注意,在Python这类动态语言中,根据鸭子类型,有read()
方法,不代表该fp对象就是一个文件流,它也可能是网络流,也可能是内存中的一个字节流,但只要read()
方法返回的是有效的图像数据,就不影响读取图像的功能。
给实例绑定属性的方法是通过实例变量,或者通过self
变量:
class Student(object): def __init__(self, name): self.name = name s = Student(‘Bob‘) s.score = 90
但是,如果Student
类本身需要绑定一个属性呢?可以直接在class中定义属性,这种属性是类属性,归Student
类所有:
class Student(object): name = ‘Student‘
当我们定义了一个类属性后,这个属性虽然归类所有,但类的所有实例都可以访问到。来测试一下:
>>> class Student(object): ... name = ‘Student‘ ... >>> s = Student() # 创建实例s >>> print(s.name) # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性 Student >>> print(Student.name) # 打印类的name属性 Student >>> s.name = ‘Michael‘ # 给实例绑定name属性 >>> print(s.name) # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性 Michael >>> print(Student.name) # 但是类属性并未消失,用Student.name仍然可以访问 Student >>> del s.name # 如果删除实例的name属性 >>> print(s.name) # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了 Student
从上面的例子可以看出,在编写程序的时候,千万不要把实例属性和类属性使用相同的名字,因为相同名称的实例属性将屏蔽掉类属性,但是当你删除实例属性后,再使用相同的名称,访问到的将是类属性。
标签:开发 强制 private 等于 字段 调用 setattr index stat
原文地址:http://www.cnblogs.com/zhangyux/p/6084074.html