标签:pdf rgs 分析 expected scan off ros atom dev
1、在linux中安装好R
2、准备好画曼哈顿图的R脚本即manhattan.r,manhattan.r内容如下:
#!/usr/bin/Rscript #example : Rscript plot_manhatom.r XXX.assoc XXX.pdf argv <- commandArgs() #define the function to plot the manhatton and quantitle-quantitle plot plot_manhatton<-function(site_file,save_file){ read.table(site_file,header=T)->data data<-data[which(data[,5]=="ADD"),] logp=-log10(data[,9]) #value chr=data[,1] #chr position<-data[,3] #position # xaxis=0 sig=numeric() lab=numeric() flogp=numeric(); the_col=c("darkblue","gray"); #chr class whole_col=c() xlabel=numeric(); length_add=0 label=numeric(); for(i in 1:22){ position[chr==i]->chr_pos chr_pos<-chr_pos-chr_pos[1]+17000000 chr_num=length(chr_pos) cat("For chrosome",i,",Num of SNPs:",chr_num,"\n") if(length(chr_pos)==0){ next } flogp=c(flogp,logp[chr==i]) label=c(label,i) whole_col=c(whole_col,rep(the_col[i%%2+1],chr_num)) chr_pos=length_add+chr_pos xlabel=c(xlabel,chr_pos) length_add=sort(chr_pos,decreasing=T)[1] lab=c(lab,(chr_pos[1]+length_add)/2) } png(save_file,height=500,width=600) par(mar=c(5,6,4,2)) plot(xlabel,flogp,col=whole_col,axes=F,xlab="",ylab="",ylim=c(0,12),pch=20,cex=0.5,cex.lab=1.2,cex.axis=1.4)#ylim=c(0,6) significance=-log10(0.05/length(data[,1])) sig_pos<-xlabel[which(flogp>significance)] for(i in 1:length(sig_pos)){ sig<-c(sig,which(xlabel>sig_pos[i]-60000 & xlabel<sig_pos[i]+60000)) } sig<-unique(sig) cat("significant signal:",sig[10:20],"\n") points(xlabel[sig],flogp[sig],col="red",pch=20,cex=0.5) title(xlab="Chromosome",ylab=expression(-log[10]*(p)),cex.lab=1.4) # title(xlab="Chromosome",ylab="Score",cex.lab=1.8) # title("GWAS scan for Hair curl", cex.main=2.5) # yaxis=seq(0,1,by=0.1) # axis(2,yaxis,yaxis,las=1,cex.axis=1.5,line=-2) axis(2,las=2,cex.axis=1.4) #las can change the directory of the axis character #las=0 always parallel to the axis #las=2 always horizontal for(i in 1:22){ mtext(label[i],side=1,at=lab[i],las=0,font=1,cex=0.8) #cex magnified relative to the to the default } # mtext("X",side=1,at=x[23],las=0,font=1,cex=1.4) # mtext("Y",side=1,at=x[24],las=0,font=1,cex=1.4) # axis(1,x,as.character(label),tick=TRUE,font=1) par(lty=2) abline(h=significance,cex=1.5,col="red") #plot the QQ plot # par(fig=c(0.58,0.92,0.43,0.95),new=TRUE) # observed <- sort(data[,12]) # logp=-log10(observed) # expected <- c(1:length(observed)) # lexp <- -(log10(expected / (length(expected)+1))) # plot(x=lexp,y=logp,pch=19,cex=0.6, xlab="Expected (-logP)", ylab="Observed (-logP)",cex.lab=1.2,cex.axis=1.2) # abline(0,1,col="red",lwd=2,lty=1) dev.off() } site_file<-argv[6];print(site_file) save_file<-argv[7];print(save_file) plot_manhatton(site_file,save_file) #round(x,digits=3) keep the length of the digit
3、准备好plink跑完后的.assoc.linear文件,比如mydata.assoc.linear
4、在linux中输入以下一个命令:
其中,mydata.png即为我们想要的曼哈顿图(manhattan plot)
Rscript manhattan.r mydata.assoc.linear mydata.png
R语言画全基因组关联分析中的曼哈顿图(manhattan plot)
标签:pdf rgs 分析 expected scan off ros atom dev
原文地址:http://www.cnblogs.com/chenwenyan/p/6095607.html