码迷,mamicode.com
首页 > 编程语言 > 详细

C#实现Levenshtein distance最小编辑距离算法

时间:2016-11-25 20:40:32      阅读:217      评论:0      收藏:0      [点我收藏+]

标签:相同   字符   动态规划   插入   ati   targe   ref   nbsp   maxlength   

Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致。该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑距离,有下列的公式。

技术分享

其中d[i-1,j]+1代表字符串s2插入一个字母才与s1相同,d[i,j-1]+1代表字符串s1删除一个字母才与s2相同,然后当xi=yj时,不需要代价,所以和上一步d[i-1,j-1]代价相同,否则+1,接着d[i,j]是以上三者中最小的一项。

算法实现(C#):

假设两个字符串分别为source,target,其长度分别为columnSize,rowSize,首先申请一个(columnSize+1)*(rowSize+1)大小的矩阵,然后将第一行和第一列初始化,matrix[i,0]=i,matrix[0,j]=j,接着就按照公式求出矩阵中其他元素,结束后,两个字符串之间的编辑距离就是matrix[rowSize, columnSize]的值,代码如下:

    public class StringComparator
    {
        public static int LevenshteinDistance(string source, string target)
        {
            int columnSize = source.Length;
            int rowSize = target.Length;
            if (columnSize == 0)
            {
                return rowSize;
            }
            if (rowSize == 0)
            {
                return columnSize;
            }
int[,] matrix = new int[rowSize + 1, columnSize + 1]; for (int i = 0; i <= columnSize; i++) { matrix[0, i] = i; } for (int j = 1; j <= rowSize; j++) { matrix[j, 0] = j; }
for (int i = 0; i < rowSize; i++) { for (int j = 0; j < columnSize; j++) { int sign; if (source[j].Equals(target[i])) sign= 0; else sign = 1; matrix[i + 1, j + 1] = Math.Min(Math.Min(matrix[i, j] + sign, matrix[i + 1, j]), matrix[i, j + 1] + 1); } } return matrix[rowSize, columnSize]; } public static float StringSimilarity(string source, string target) { int distance = LevenshteinDistance(source, target); float maxLength = Math.Max(source.Length, target.Length); return (maxLength - distance) / maxLength; } }

 

C#实现Levenshtein distance最小编辑距离算法

标签:相同   字符   动态规划   插入   ati   targe   ref   nbsp   maxlength   

原文地址:http://www.cnblogs.com/feiyuhuo/p/6102579.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!