标签:ica not 属性集 机器 tar over 标签 条件 预测
1.决策树
骤如下:
(1):假设T为训练样本集。
(2):从属性集合Attributes中选择一个最能区别T中样本的属性。
(3):创建一个树节点,它的值为所选择的属性。创建此节点的子节点,每个子链代表所选属性的一个唯一值(唯一区间),使用子链的值进一步将样本细分为子类。
对于每一个分支继续重复(2)(3)的过程,直到满足以下两个条件之一:
(a):所有属性已经被这条路径包括。
(b):与这个节点关联的所有训练样本都具有相同的目标属性(熵为0)。
2.随机森林
1.假设我们设定训练集中的样本个数为N,然后通过有重置的重复多次抽样来获得这N个样本,这样的抽样结果将作为我们生成决策树的训练集;
2.如果有M个输入变量,每个节点都将随机选择m(m<M)个特定的变量,然后运用这m个变量来确定最佳的分裂点。在决策树的生成过程中,m的值是保持不变的;
3.每棵决策树都最大可能地进行生长而不进行剪枝;
4.通过对所有的决策树进行加总来预测新的数据(在分类时采用多数投票,在回归时采用平均)。
3.Adaboost
Adaboost的简单版本训练过程如下:
1. 训练第一个分类器,样本的权值D为相同的均值。通过一个弱分类器,得到这5个样本(请对应书中的例子来看,依旧是machine learning in action)的分类预测标签。与给出的样本真实标签对比,就可能出现误差(即错误)。如果某个样本预测错误,则它对应的错误值为该样本的权重,如果分类正确,则错误值为0. 最后累加5个样本的错误率之和,记为ε。
2. 通过ε来计算该弱分类器的权重α,公式如下:
3. 通过α来计算训练下一个弱分类器样本的权重D,如果对应样本分类正确,则减小该样本的权重,公式为:如果样本分类错误,则增加该样本的权重,公式为:
4. 循环步骤1,2,3来继续训练多个分类器,只是其D值不同而已。
AdaBoost算法的步骤为:更新训练数据权值->在此权值上训练弱分类器(策略为最小化分类误差率)->计算分类误差率(误分类样本的权值之和)->计算分类器系数(要用到上一步的分类误差率)->更新训练权值->构建基本分类器的线性组合,一直循环,直到基本分类器的线性组合没有误分类点。
AdaBoost的做法:
加权多数表决的方法,加大分类误差率小的弱分类器的权值,使其在表决中起较大作用,减小分类误差率大的弱分类器的权值,使其在表决中起较小的作用
4.GBDT
5.xgboost
标签:ica not 属性集 机器 tar over 标签 条件 预测
原文地址:http://www.cnblogs.com/think90/p/6135659.html