码迷,mamicode.com
首页 > 编程语言 > 详细

图的遍历(邻居(数组+队列)实例

时间:2016-12-12 13:47:07      阅读:278      评论:0      收藏:0      [点我收藏+]

标签:bfs   har   use   打印   append   amp   tmg   stdio.h   lib   

1.#include <stdio.h>
#include <stdlib.h>
#include "MGraph.h"

/* run this program using the console pauser or add your own getch, system("pause") or input loop */

void print_data(MVertex* v)
{
    printf("%s", (char*)v);
}

int main(int argc, char *argv[])
{
    MVertex* v[] = {"A", "B", "C", "D", "E", "F"};
    MGraph* graph = MGraph_Create(v, 6);
    
    MGraph_AddEdge(graph, 0, 1, 1);
    MGraph_AddEdge(graph, 0, 2, 1);
    MGraph_AddEdge(graph, 0, 3, 1);
    MGraph_AddEdge(graph, 1, 5, 1);
    MGraph_AddEdge(graph, 1, 4, 1);
    MGraph_AddEdge(graph, 2, 1, 1);
    MGraph_AddEdge(graph, 3, 4, 1);
    MGraph_AddEdge(graph, 4, 2, 1);
    //打印顶点与边的信息
    MGraph_Display(graph, print_data);
    
    MGraph_DFS(graph, 0, print_data);
    MGraph_BFS(graph, 0, print_data);
    
    MGraph_Destroy(graph);
    
    return 0;
}

2.
#ifndef _MGRAPH_H_
#define _MGRAPH_H_

typedef void MGraph;
typedef void MVertex;
typedef void (MGraph_Printf)(MVertex*);

MGraph* MGraph_Create(MVertex** v, int n);

void MGraph_Destroy(MGraph* graph);

void MGraph_Clear(MGraph* graph);

int MGraph_AddEdge(MGraph* graph, int v1, int v2, int w);
//清除边  返回权
int MGraph_RemoveEdge(MGraph* graph, int v1, int v2);
//获取边的权值
int MGraph_GetEdge(MGraph* graph, int v1, int v2);
//v点的度数
int MGraph_TD(MGraph* graph, int v);
//给顶点数返回
int MGraph_VertexCount(MGraph* graph);
//返回边数
int MGraph_EdgeCount(MGraph* graph);

void MGraph_DFS(MGraph* graph, int v, MGraph_Printf* pFunc);

void MGraph_BFS(MGraph* graph, int v, MGraph_Printf* pFunc);

void MGraph_Display(MGraph* graph, MGraph_Printf* pFunc);

#endif

3.#include <malloc.h>
#include <stdio.h>
#include "MGraph.h"
#include "LinkQueue.h"

/* 邻居矩阵法 */
typedef struct _tag_MGraph
{
    int count;
    MVertex** v;
    int** matrix;
} TMGraph;
//深度优先遍历算法实现
static void recursive_dfs(TMGraph* graph, int v, int visited[], MGraph_Printf* pFunc)
{
    int i = 0;
    
    pFunc(graph->v[v]);
    
    visited[v] = 1;
    
    printf(", ");
    
    for(i=0; i<graph->count; i++)
    {
        if( (graph->matrix[v][i] != 0) && !visited[i] )
        {
            recursive_dfs(graph, i, visited, pFunc);
        }
    }
}
//广度优先遍历算法实现
static void bfs(TMGraph* graph, int v, int visited[], MGraph_Printf* pFunc)
{
    LinkQueue* queue = LinkQueue_Create();
    
    if( queue != NULL )
    {
        LinkQueue_Append(queue, graph->v + v);
        
        visited[v] = 1;
        
        while( LinkQueue_Length(queue) > 0 )
        {
            int i = 0;
            
            v = (MVertex**)LinkQueue_Retrieve(queue) - graph->v;
            
            pFunc(graph->v[v]);
            
            printf(", ");
            
            for(i=0; i<graph->count; i++)
            {
                if( (graph->matrix[v][i] != 0) && !visited[i] )
                {
                    LinkQueue_Append(queue, graph->v + i);
                    
                    visited[i] = 1;
                }
            }
        }
    }
    
    LinkQueue_Destroy(queue);
}
//创建图
MGraph* MGraph_Create(MVertex** v, int n)  // O(n)
{
    TMGraph* ret = NULL;
    
    if( (v != NULL ) && (n > 0) )
    {
        ret = (TMGraph*)malloc(sizeof(TMGraph));
        
        if( ret != NULL )
        {
            int* p = NULL;
            
            ret->count = n;
            
            ret->v = (MVertex**)malloc(sizeof(MVertex*) * n);
            /*  动态申请二维数组 */
            ret->matrix = (int**)malloc(sizeof(int*) * n);
            
            p = (int*)calloc(n * n, sizeof(int));
            
            if( (ret->v != NULL) && (ret->matrix != NULL) && (p != NULL) )
            {
                int i = 0;
                //给而二维数组遍历
                for(i=0; i<n; i++)
                {
                    ret->v[i] = v[i];
                    ret->matrix[i] = p + i * n;
                }
            }
            else
            {
                free(p);
                free(ret->matrix);
                free(ret->v);
                free(ret);
                
                ret = NULL;
            }
        }
    }
    
    return ret;
}

void MGraph_Destroy(MGraph* graph) // O(1)
{
    TMGraph* tGraph = (TMGraph*)graph;
    
    if( tGraph != NULL )
    {
        free(tGraph->v);
        free(tGraph->matrix[0]);
        free(tGraph->matrix);
        free(tGraph);
    }
}

void MGraph_Clear(MGraph* graph) // O(n*n)
{
    TMGraph* tGraph = (TMGraph*)graph;
    
    if( tGraph != NULL )
    {
        int i = 0;
        int j = 0;
        
        for(i=0; i<tGraph->count; i++)
        {
            for(j=0; j<tGraph->count; j++)
            {
                tGraph->matrix[i][j] = 0;
            }
        }
    }
}

int MGraph_AddEdge(MGraph* graph, int v1, int v2, int w) // O(1)
{
    TMGraph* tGraph = (TMGraph*)graph;
    int ret = (tGraph != NULL);
    
    ret = ret && (0 <= v1) && (v1 < tGraph->count);
    ret = ret && (0 <= v2) && (v2 < tGraph->count);
    ret = ret && (0 <= w);
    
    if( ret )
    {
        tGraph->matrix[v1][v2] = w;
    }
    
    return ret;
}

int MGraph_RemoveEdge(MGraph* graph, int v1, int v2) // O(1)
{
    int ret = MGraph_GetEdge(graph, v1, v2);
    
    if( ret != 0 )
    {
        ((TMGraph*)graph)->matrix[v1][v2] = 0;
    }
    
    return ret;
}

int MGraph_GetEdge(MGraph* graph, int v1, int v2) // O(1)
{
    TMGraph* tGraph = (TMGraph*)graph;
    int condition = (tGraph != NULL);
    int ret = 0;
    
    condition = condition && (0 <= v1) && (v1 < tGraph->count);
    condition = condition && (0 <= v2) && (v2 < tGraph->count);
    
    if( condition )
    {
        ret = tGraph->matrix[v1][v2];
    }
    
    return ret;
}
//顶点
int MGraph_TD(MGraph* graph, int v) // O(n)
{
    TMGraph* tGraph = (TMGraph*)graph;
    int condition = (tGraph != NULL);
    int ret = 0;
    
    condition = condition && (0 <= v) && (v < tGraph->count);
    
    if( condition )
    {
        int i = 0;
        
        for(i=0; i<tGraph->count; i++)
        {
            if( tGraph->matrix[v][i] != 0 )
            {
                ret++;
            }
            
            if( tGraph->matrix[i][v] != 0 )
            {
                ret++;
            }
        }
    }
    
    return ret;
}
//返回顶点数
int MGraph_VertexCount(MGraph* graph) // O(1)
{
    TMGraph* tGraph = (TMGraph*)graph;
    int ret = 0;
    
    if( tGraph != NULL )
    {
        ret = tGraph->count;
    }
    
    return ret;
}
//返回边数
int MGraph_EdgeCount(MGraph* graph) // O(n*n)
{
    TMGraph* tGraph = (TMGraph*)graph;
    int ret = 0;
    
    if( tGraph != NULL )
    {
        int i = 0;
        int j = 0;
        
        for(i=0; i<tGraph->count; i++)
        {
            for(j=0; j<tGraph->count; j++)
            {
                if( tGraph->matrix[i][j] != 0 )
                {
                    ret++;
                }
            }
        }
    }
    
    return ret;
}
//深度优先递归
void MGraph_DFS(MGraph* graph, int v, MGraph_Printf* pFunc)
{
    TMGraph* tGraph = (TMGraph*)graph;
    int* visited = NULL;
    int condition = (tGraph != NULL);
    
    condition = condition && (0 <= v) && (v < tGraph->count);
    condition = condition && (pFunc != NULL);
    condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
    
    if( condition )
    {
        int i = 0;
        
        recursive_dfs(tGraph, v, visited, pFunc);
        
        for(i=0; i<tGraph->count; i++)
        {
            if( !visited[i] )
            {
                recursive_dfs(tGraph, i, visited, pFunc);
            }
        }
        
        printf("\n");
    }
    
    free(visited);
}
//广度优先递归
void MGraph_BFS(MGraph* graph, int v, MGraph_Printf* pFunc)
{
    TMGraph* tGraph = (TMGraph*)graph;
    int* visited = NULL;
    int condition = (tGraph != NULL);
    
    condition = condition && (0 <= v) && (v < tGraph->count);
    condition = condition && (pFunc != NULL);
    condition = condition && ((visited = (int*)calloc(tGraph->count, sizeof(int))) != NULL);
    
    if( condition )
    {
        int i = 0;
        
        bfs(tGraph, v, visited, pFunc);
        
        for(i=0; i<tGraph->count; i++)
        {
            if( !visited[i] )
            {
                bfs(tGraph, i, visited, pFunc);
            }
        }
        
        printf("\n");
    }
    
    free(visited);
}
//打印顶点与边的信息
void MGraph_Display(MGraph* graph, MGraph_Printf* pFunc) // O(n*n)
{
    TMGraph* tGraph = (TMGraph*)graph;
    
    if( (tGraph != NULL) && (pFunc != NULL) )
    {
        int i = 0;
        int j = 0;
        //打印顶点
        for(i=0; i<tGraph->count; i++)
        {
            printf("%d:", i);
            pFunc(tGraph->v[i]);
            printf(" ");
        }
        
        printf("\n");
        //打印边
        for(i=0; i<tGraph->count; i++)
        {
            for(j=0; j<tGraph->count; j++)
            {
                if( tGraph->matrix[i][j] != 0 )
                {
                    printf("<");
                    pFunc(tGraph->v[i]);
                    printf(", ");
                    pFunc(tGraph->v[j]);
                    printf(", %d", tGraph->matrix[i][j]);
                    printf(">");
                    printf(" ");
                }
            }
        }
        
        printf("\n");
    }
}

4.#ifndef _LINKQUEUE_H_
#define _LINKQUEUE_H_

typedef void LinkQueue;

LinkQueue* LinkQueue_Create();

void LinkQueue_Destroy(LinkQueue* queue);

void LinkQueue_Clear(LinkQueue* queue);

int LinkQueue_Append(LinkQueue* queue, void* item);

void* LinkQueue_Retrieve(LinkQueue* queue);

void* LinkQueue_Header(LinkQueue* queue);

int LinkQueue_Length(LinkQueue* queue);

#endif


5.#include <malloc.h>
#include <stdio.h>
#include "LinkQueue.h"

typedef struct _tag_LinkQueueNode TLinkQueueNode;
struct _tag_LinkQueueNode
{
    TLinkQueueNode* next;
    void* item;
};

typedef struct _tag_LinkQueue
{
    TLinkQueueNode* front;
    TLinkQueueNode* rear;
    int length;
} TLinkQueue;

LinkQueue* LinkQueue_Create() // O(1)
{
    TLinkQueue* ret = (TLinkQueue*)malloc(sizeof(TLinkQueue));
    
    if( ret != NULL )
    {
        ret->front = NULL;
        ret->rear = NULL;
        ret->length = 0;
    }
    
    return ret;
}

void LinkQueue_Destroy(LinkQueue* queue) // O(n)
{
    LinkQueue_Clear(queue);
    free(queue);
}

void LinkQueue_Clear(LinkQueue* queue) // O(n)
{
    while( LinkQueue_Length(queue) > 0 )
    {
        LinkQueue_Retrieve(queue);
    }
}

int LinkQueue_Append(LinkQueue* queue, void* item) // O(1)
{
    TLinkQueue* sQueue = (TLinkQueue*)queue;
    TLinkQueueNode* node = (TLinkQueueNode*)malloc(sizeof(TLinkQueueNode));
    int ret = (sQueue != NULL ) && (item != NULL) && (node != NULL);
    
    if( ret )
    {
        node->item = item;
        
        if( sQueue->length > 0 )
        {
            sQueue->rear->next = node;
            sQueue->rear = node;
            node->next = NULL;
        }
        else
        {
            sQueue->front = node;
            sQueue->rear = node;
            node->next = NULL;
        }
        
        sQueue->length++;
    }
    
    if( !ret )
    {
        free(node);
    }
    
    return ret;
}

void* LinkQueue_Retrieve(LinkQueue* queue) // O(1)
{
    TLinkQueue* sQueue = (TLinkQueue*)queue;
    TLinkQueueNode* node = NULL;
    void* ret = NULL;
    
    if( (sQueue != NULL) && (sQueue->length > 0) )
    {
        node = sQueue->front;
        
        sQueue->front = node->next;
        
        ret = node->item;
        
        free(node);
        
        sQueue->length--;
        
        if( sQueue->length == 0 )
        {
            sQueue->front = NULL;
            sQueue->rear = NULL;
        }
    }
    
    return ret;
}

void* LinkQueue_Header(LinkQueue* queue) // O(1)
{
    TLinkQueue* sQueue = (TLinkQueue*)queue;
    void* ret = NULL;
    
    if( (sQueue != NULL) && (sQueue->length > 0) )
    {
        ret = sQueue->front->item;
    }
    
    return ret;
}

int LinkQueue_Length(LinkQueue* queue) // O(1)
{
    TLinkQueue* sQueue = (TLinkQueue*)queue;
    int ret = -1;
    
    if( sQueue != NULL )
    {
        ret = sQueue->length;
    }
    
    return ret;
}


 

图的遍历(邻居(数组+队列)实例

标签:bfs   har   use   打印   append   amp   tmg   stdio.h   lib   

原文地址:http://www.cnblogs.com/wxb20/p/6163851.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!