码迷,mamicode.com
首页 > 编程语言 > 详细

Hadoop MapReduce编程 API入门系列之二次排序

时间:2016-12-12 19:21:22      阅读:277      评论:0      收藏:0      [点我收藏+]

标签:tput   span   mem   work   ios   exe   table   sort   封装   

 

 

 

   

   不多说,直接上代码。

 技术分享

技术分享

技术分享

技术分享

 

2016-12-12 17:04:32,012 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JVM Metrics with processName=JobTracker, sessionId=
2016-12-12 17:04:33,056 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2016-12-12 17:04:33,059 WARN [org.apache.hadoop.mapreduce.JobSubmitter] - No job jar file set. User classes may not be found. See Job or Job#setJar(String).
2016-12-12 17:04:33,083 INFO [org.apache.hadoop.mapreduce.lib.input.FileInputFormat] - Total input paths to process : 1
2016-12-12 17:04:33,161 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - number of splits:1
2016-12-12 17:04:33,562 INFO [org.apache.hadoop.mapreduce.JobSubmitter] - Submitting tokens for job: job_local1173601391_0001
2016-12-12 17:04:34,242 INFO [org.apache.hadoop.mapreduce.Job] - The url to track the job: http://localhost:8080/
2016-12-12 17:04:34,244 INFO [org.apache.hadoop.mapreduce.Job] - Running job: job_local1173601391_0001
2016-12-12 17:04:34,247 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter set in config null
2016-12-12 17:04:34,264 INFO [org.apache.hadoop.mapred.LocalJobRunner] - OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
2016-12-12 17:04:34,371 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for map tasks
2016-12-12 17:04:34,373 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1173601391_0001_m_000000_0
2016-12-12 17:04:34,439 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 17:04:34,667 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@65bb90dc
2016-12-12 17:04:34,676 INFO [org.apache.hadoop.mapred.MapTask] - Processing split: file:/D:/Code/MyEclipseJavaCode/myMapReduce/data/secondarySort/secondarySort.txt:0+120
2016-12-12 17:04:34,762 INFO [org.apache.hadoop.mapred.MapTask] - (EQUATOR) 0 kvi 26214396(104857584)
2016-12-12 17:04:34,763 INFO [org.apache.hadoop.mapred.MapTask] - mapreduce.task.io.sort.mb: 100
2016-12-12 17:04:34,763 INFO [org.apache.hadoop.mapred.MapTask] - soft limit at 83886080
2016-12-12 17:04:34,763 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufvoid = 104857600
2016-12-12 17:04:34,763 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396; length = 6553600
2016-12-12 17:04:34,771 INFO [org.apache.hadoop.mapred.MapTask] - Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
2016-12-12 17:04:34,789 INFO [org.apache.hadoop.mapred.LocalJobRunner] -
2016-12-12 17:04:34,789 INFO [org.apache.hadoop.mapred.MapTask] - Starting flush of map output
2016-12-12 17:04:34,789 INFO [org.apache.hadoop.mapred.MapTask] - Spilling map output
2016-12-12 17:04:34,789 INFO [org.apache.hadoop.mapred.MapTask] - bufstart = 0; bufend = 216; bufvoid = 104857600
2016-12-12 17:04:34,790 INFO [org.apache.hadoop.mapred.MapTask] - kvstart = 26214396(104857584); kvend = 26214328(104857312); length = 69/6553600
2016-12-12 17:04:34,809 INFO [org.apache.hadoop.mapred.MapTask] - Finished spill 0
2016-12-12 17:04:34,818 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1173601391_0001_m_000000_0 is done. And is in the process of committing
2016-12-12 17:04:34,838 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map
2016-12-12 17:04:34,838 INFO [org.apache.hadoop.mapred.Task] - Task ‘attempt_local1173601391_0001_m_000000_0‘ done.
2016-12-12 17:04:34,838 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1173601391_0001_m_000000_0
2016-12-12 17:04:34,839 INFO [org.apache.hadoop.mapred.LocalJobRunner] - map task executor complete.
2016-12-12 17:04:34,846 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Waiting for reduce tasks
2016-12-12 17:04:34,846 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Starting task: attempt_local1173601391_0001_r_000000_0
2016-12-12 17:04:34,864 INFO [org.apache.hadoop.yarn.util.ProcfsBasedProcessTree] - ProcfsBasedProcessTree currently is supported only on Linux.
2016-12-12 17:04:34,950 INFO [org.apache.hadoop.mapred.Task] - Using ResourceCalculatorProcessTree : org.apache.hadoop.yarn.util.WindowsBasedProcessTree@59b59452
2016-12-12 17:04:34,954 INFO [org.apache.hadoop.mapred.ReduceTask] - Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@73d5cf65
2016-12-12 17:04:34,974 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - MergerManager: memoryLimit=1327077760, maxSingleShuffleLimit=331769440, mergeThreshold=875871360, ioSortFactor=10, memToMemMergeOutputsThreshold=10
2016-12-12 17:04:35,011 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - attempt_local1173601391_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
2016-12-12 17:04:35,048 INFO [org.apache.hadoop.mapreduce.task.reduce.LocalFetcher] - localfetcher#1 about to shuffle output of map attempt_local1173601391_0001_m_000000_0 decomp: 254 len: 258 to MEMORY
2016-12-12 17:04:35,060 INFO [org.apache.hadoop.mapreduce.task.reduce.InMemoryMapOutput] - Read 254 bytes from map-output for attempt_local1173601391_0001_m_000000_0
2016-12-12 17:04:35,123 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - closeInMemoryFile -> map-output of size: 254, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->254
2016-12-12 17:04:35,125 INFO [org.apache.hadoop.mapreduce.task.reduce.EventFetcher] - EventFetcher is interrupted.. Returning
2016-12-12 17:04:35,126 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 17:04:35,126 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - finalMerge called with 1 in-memory map-outputs and 0 on-disk map-outputs
2016-12-12 17:04:35,136 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 17:04:35,137 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 244 bytes
2016-12-12 17:04:35,139 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merged 1 segments, 254 bytes to disk to satisfy reduce memory limit
2016-12-12 17:04:35,139 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 1 files, 258 bytes from disk
2016-12-12 17:04:35,140 INFO [org.apache.hadoop.mapreduce.task.reduce.MergeManagerImpl] - Merging 0 segments, 0 bytes from memory into reduce
2016-12-12 17:04:35,141 INFO [org.apache.hadoop.mapred.Merger] - Merging 1 sorted segments
2016-12-12 17:04:35,142 INFO [org.apache.hadoop.mapred.Merger] - Down to the last merge-pass, with 1 segments left of total size: 244 bytes
2016-12-12 17:04:35,143 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 17:04:35,150 INFO [org.apache.hadoop.conf.Configuration.deprecation] - mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
2016-12-12 17:04:35,158 INFO [org.apache.hadoop.mapred.Task] - Task:attempt_local1173601391_0001_r_000000_0 is done. And is in the process of committing
2016-12-12 17:04:35,160 INFO [org.apache.hadoop.mapred.LocalJobRunner] - 1 / 1 copied.
2016-12-12 17:04:35,160 INFO [org.apache.hadoop.mapred.Task] - Task attempt_local1173601391_0001_r_000000_0 is allowed to commit now
2016-12-12 17:04:35,166 INFO [org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter] - Saved output of task ‘attempt_local1173601391_0001_r_000000_0‘ to file:/D:/Code/MyEclipseJavaCode/myMapReduce/out/secondarySort/_temporary/0/task_local1173601391_0001_r_000000
2016-12-12 17:04:35,167 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce > reduce
2016-12-12 17:04:35,167 INFO [org.apache.hadoop.mapred.Task] - Task ‘attempt_local1173601391_0001_r_000000_0‘ done.
2016-12-12 17:04:35,167 INFO [org.apache.hadoop.mapred.LocalJobRunner] - Finishing task: attempt_local1173601391_0001_r_000000_0
2016-12-12 17:04:35,168 INFO [org.apache.hadoop.mapred.LocalJobRunner] - reduce task executor complete.
2016-12-12 17:04:35,248 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local1173601391_0001 running in uber mode : false
2016-12-12 17:04:35,249 INFO [org.apache.hadoop.mapreduce.Job] - map 100% reduce 100%
2016-12-12 17:04:35,251 INFO [org.apache.hadoop.mapreduce.Job] - Job job_local1173601391_0001 completed successfully
2016-12-12 17:04:35,271 INFO [org.apache.hadoop.mapreduce.Job] - Counters: 33
File System Counters
FILE: Number of bytes read=1186
FILE: Number of bytes written=394623
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=18
Map output records=18
Map output bytes=216
Map output materialized bytes=258
Input split bytes=145
Combine input records=0
Combine output records=0
Reduce input groups=4
Reduce shuffle bytes=258
Reduce input records=18
Reduce output records=18
Spilled Records=36
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=0
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=534773760
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=120
File Output Format Counters
Bytes Written=115

 

 

 

 

 

技术分享

技术分享

技术分享

 

 

 

 

 

 

 

 

 

 

 

 

 

代码

package zhouls.bigdata.myMapReduce.SecondarySort;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;


//第一步:自定义IntPair类,将示例数据中的key/value封装成一个整体作为Key,同时实现 WritableComparable 接口并重写其方法。
/**
* 自己定义的key类应该实现WritableComparable接口
*/
public class IntPair implements WritableComparable< IntPair>
{
int first;//第一个成员变量
int second;//第二个成员变量
public void set(int left, int right)
{
first = left;
second = right;
}
public int getFirst()
{
return first;
}
public int getSecond()
{
return second;
}

//反序列化,从流中的二进制转换成IntPair
public void readFields(DataInput in) throws IOException
{
first = in.readInt();
second = in.readInt();
}

//序列化,将IntPair转化成使用流传送的二进制
public void write(DataOutput out) throws IOException
{
out.writeInt(first);
out.writeInt(second);
}

//key的比较
public int compareTo(IntPair o)
{
// TODO Auto-generated method stub
if (first != o.first)
{
return first < o.first ? -1 : 1;
}else if (second != o.second)
{
return second < o.second ? -1 : 1;
}else
{
return 0;
}
}

@Override
public int hashCode()
{
return first * 157 + second;
}
@Override
public boolean equals(Object right)
{
if (right == null)
return false;
if (this == right)
return true;
if (right instanceof IntPair)
{
IntPair r = (IntPair) right;
return r.first == first && r.second == second;
}else
{
return false;
}
}
}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

package zhouls.bigdata.myMapReduce.SecondarySort;

import zhouls.bigdata.myMapReduce.Join.JoinRecordAndStationName;

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

 


public class SecondarySort extends Configured implements Tool
{
// 自定义map
public static class Map extends Mapper< LongWritable, Text, IntPair, IntWritable>
{
private final IntPair intkey = new IntPair();
private final IntWritable intvalue = new IntWritable();

public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException
{
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
int left = 0;
int right = 0;
if (tokenizer.hasMoreTokens())
{
left = Integer.parseInt(tokenizer.nextToken());
if (tokenizer.hasMoreTokens())
right = Integer.parseInt(tokenizer.nextToken());
intkey.set(left, right);
intvalue.set(right);
context.write(intkey, intvalue);
}
}
}


//第二步:自定义分区函数类FirstPartitioner,根据 IntPair 中的first实现分区。
/**
* 分区函数类。根据first确定Partition。
*/
public static class FirstPartitioner extends Partitioner< IntPair, IntWritable>
{
@Override
public int getPartition(IntPair key, IntWritable value,int numPartitions)
{
return Math.abs(key.getFirst() * 127) % numPartitions;
}
}


//第三步:自定义 SortComparator 实现 IntPair 类中的first和second排序。本课程中没有使用这种方法,而是使用 IntPair 中的compareTo()方法实现的。
//第四步:自定义 GroupingComparator 类,实现分区内的数据分组。
/**
*继承WritableComparator
*/
public static class GroupingComparator extends WritableComparator
{
protected GroupingComparator()
{
super(IntPair.class, true);
}
@Override
//Compare two WritableComparables.
public int compare(WritableComparable w1, WritableComparable w2)
{
IntPair ip1 = (IntPair) w1;
IntPair ip2 = (IntPair) w2;
int l = ip1.getFirst();
int r = ip2.getFirst();
return l == r ? 0 : (l < r ? -1 : 1);
}
}


// 自定义reduce
public static class Reduce extends Reducer< IntPair, IntWritable, Text, IntWritable>
{
private final Text left = new Text();
public void reduce(IntPair key, Iterable< IntWritable> values,Context context) throws IOException, InterruptedException
{
left.set(Integer.toString(key.getFirst()));
for (IntWritable val : values)
{
context.write(left, val);
}
}
}


public int run(String[] args)throws Exception
{
// TODO Auto-generated method stub
Configuration conf = new Configuration();
Path mypath=new Path(args[1]);
FileSystem hdfs = mypath.getFileSystem(conf);
if (hdfs.isDirectory(mypath))
{
hdfs.delete(mypath, true);
}

Job job = new Job(conf, "secondarysort");
job.setJarByClass(SecondarySort.class);

FileInputFormat.setInputPaths(job, new Path(args[0]));//输入路径
FileOutputFormat.setOutputPath(job, new Path(args[1]));//输出路径

job.setMapperClass(Map.class);// Mapper
job.setReducerClass(Reduce.class);// Reducer
//job.setNumReducerTask(3);

job.setPartitionerClass(FirstPartitioner.class);// 分区函数
//job.setSortComparatorClass(KeyComparator.Class);//本课程并没有自定义SortComparator,而是使用IntPair自带的排序
job.setGroupingComparatorClass(GroupingComparator.class);// 分组函数


job.setMapOutputKeyClass(IntPair.class);
job.setMapOutputValueClass(IntWritable.class);

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);


return job.waitForCompletion(true) ? 0 : 1;
}

/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception
{
// TODO Auto-generated method stub

// String[] args0={"hdfs://HadoopMaster:9000/secondarySort/secondarySort.txt",
// "hdfs://HadoopMaster:9000/out/secondarySort"};

String[] args0={"./data/secondarySort/secondarySort.txt",
"./out/secondarySort"};


int ec =ToolRunner.run(new Configuration(),new SecondarySort(),args0);
System.exit(ec);
}
}

 

Hadoop MapReduce编程 API入门系列之二次排序

标签:tput   span   mem   work   ios   exe   table   sort   封装   

原文地址:http://www.cnblogs.com/zlslch/p/6165256.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!