码迷,mamicode.com
首页 > 移动开发 > 详细

MapReduce实现手机上网日志分析(排序)

时间:2016-12-14 14:23:48      阅读:291      评论:0      收藏:0      [点我收藏+]

标签:ret   tao   pen   count()   private   定位   auto   builder   tostring   

一、背景

1.1 流程

  实现排序,分组拍上一篇通过Partitioner实现了。

  实现接口,自动产生接口方法,写属性,产生getter和setter,序列化和反序列化属性,写比较方法,重写toString,为了方便复制写够着方法,不过重写够着方法map里需要不停地new,发现LongWritable有set方法,text也有,可以用,产生默认够着方法。

	public void set(String account,double income,double expense,double surplus) {
		this.account = account;
		this.income = income;
		this.expense = expense;
		this.surplus = income-expense;
	}

1.2 数据集

为了和上一篇保在知识上持递进,数据及换了,名字没变。

技术分享

  下面是输出结果,其实mr也会自动排序,不过string按字典序排序了。

技术分享

二、理论知识

  字符串拼接,记得以前自己写过,现在拿出来看看,http://www.cnblogs.com/hxsyl/archive/2012/10/18/2729112.html

  简单总结扩展如下:String是final的,不能改变也不能继承,因此在每次对 String 类型进行改变的时候其实都等同于生成了一个新的 String 对象,然后将指针指向新的 String 对象,所以经常改变内容的字符串最好不要用 String ,因为每次生成对象都会对系统性能产生影响,特别当内存中无引用对象多了以后, JVM 的 GC 就会开始工作,那速度是一定会相当慢的。

 

  如果for循环1w次,这句 string += "hello";的过程相当于将原有的string变量指向的对象内容取出与"hello"作字符串相加操作再存进另一个新的String对象当中,再让string变量指向新生成的对象。反编译出的字节码文件可以很清楚地看出,每次循环会new出一个StringBuilder对象,然后进行append操作,最后通过toString方法返回String对象。也就是说这个循环执行完毕new出了10000个对象,试想一下,如果这些对象没有被回收,内存浪费不说,有可能重复使用赵成系统卡死。从上面还可以看出:string+="hello"的操作事实上会自动被JVM优化成:

  StringBuilder str = new StringBuilder(string);

  str.append("hello");

  str.toString();

  如果直接for循环里StringBuilder 的话会只是new一次。效率高。

  而StringBuffer是线程安全的,多了synchronized关键字,也就是在多线程下会顺序读取换冲刺。

 参考了这个http://blog.csdn.net/loveyaozu/article/details/47037957

三、实体类

  收入相同的话按消费从低到高,否则收入从高到低。

package cn.app.hadoop.mr.sort;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.math.BigDecimal;

import org.apache.hadoop.io.WritableComparable;
import org.apache.jasper.tagplugins.jstl.core.Out;

//Writable是序列化接口
//泛型是InfoBean,就像比较学生信息一样,成绩,性别等 ,封装在了一个bean里
//不过发现WritableComparable  有了序列化和反序列化
public class InfoBean implements WritableComparable<InfoBean>{
	
	
	private String account;
	//金钱类都需要BigDecimal,double顺势精度,不过不知道下边序列化咋写类型,所以先用double,估计writeUTF可以
	private double income;
	private double expense;
	private double surplus;
	
	
	public String getAccount() {
		return account;
	}
	public void setAccount(String account) {
		this.account = account;
	}
	public double getIncome() {
		return income;
	}
	public void setIncome(double income) {
		this.income = income;
	}
	public double getExpense() {
		return expense;
	}
	public void setExpense(double expense) {
		this.expense = expense;
	}
	public double getSurplus() {
		return surplus;
	}
	public void setSurplus(double surplus) {
		this.surplus = surplus;
	}
	public void readFields(DataInput in) throws IOException {
		// TODO Auto-generated method stub
		this.account = in.readUTF();
		this.income = in.readDouble();
		this.expense = in.readDouble();
		this.surplus = in.readDouble();
	}
	public void write(DataOutput out) throws IOException {
		// TODO Auto-generated method stub
		out.writeUTF(account);
		out.writeDouble(income);
		out.writeDouble(expense);
		out.writeDouble(surplus);
		
	}
	
	public void set(String account,double income,double expense) {
		this.account = account;
		this.income = income;
		this.expense = expense;
		this.surplus = income - expense;
	}
	

	public InfoBean() {
		super();
		// TODO Auto-generated constructor stub
	}
	@Override
	public String toString() {
		return "InfoBean [income=" + income + ", expense=" + expense
				+ ", surplus=" + surplus + "]";
	}
	public int compareTo(InfoBean o) {
		// TODO Auto-generated method stub
		if(this.income == o.getIncome()) {
			return this.expense>o.getExpense()?1:-1;
		}else {
			return this.income>o.getIncome()?-1:1;
		}
	}
}

四、第一种实现

4.1 Mapper

//第一个处理文本的话一般是LongWritable  或者object
//一行一行的文本是text
//输出的key的手机号 定位Text
//结果是DataBean  一定要实现Writable接口
public class InfoSortMapper extends Mapper<LongWritable, Text, Text, InfoBean> {

	
	private InfoBean v = new InfoBean();
	private Text k = new Text();
	
	public void map(LongWritable key, Text value, Context context)
			throws IOException, InterruptedException {
		String line = value.toString();
		String[] fields = line.split("\t");
		String account = fields[0];
		double in = Double.parseDouble(fields[1]);
		double out = Double.parseDouble(fields[2]);
		
		//不用每次new  几遍不重写内存引用,也很站用资源
		k.set(account);
		v.set(account, in, out);
		
		context.write(k, v);
	}

  4.2 Reducer

public class InfoSortReducer extends Reducer<Text, InfoBean, Text, InfoBean> {

	//k就是key,不需要
	private InfoBean v = new InfoBean();
	public void reduce(Text key, Iterable<InfoBean> value, Context context)
			throws IOException, InterruptedException {
		// process values
		double incomeSum = 0;
		double expenseSum = 0;
		for (InfoBean o : value) {
			incomeSum += o.getIncome();
			expenseSum += o.getExpense();
		}
		v.set(key.toString(), incomeSum, expenseSum);
		//databean会自动调用toString
		context.write(key,v);
	}
}

五、第二种实现

5.1 Mapper

//对 InfoBean  排序  k2就是他
public class SortMapper extends Mapper<LongWritable, Text, InfoBean, NullWritable> {

	
	private InfoBean k = new InfoBean();
	public void map(LongWritable key, Text value, Context context)
			throws IOException, InterruptedException {
		String line = value.toString();
		String[] fields = line.split("\t");
		String account = fields[0];
		double in = Double.parseDouble(fields[1]);
		double out = Double.parseDouble(fields[2]);
		
		//不用每次new  几遍不重写内存引用,也很站用资源
		k.set(account, in, out);
		//value必须是NullWritable.get(),NullWritable不行,提示不是变量
		context.write(k, NullWritable.get());
	}
}

  5.2 Reducer

//对 InfoBean  排序  k2就是他
public class SortMapper extends Mapper<LongWritable, Text, InfoBean, NullWritable> {

	
	private InfoBean k = new InfoBean();
	public void map(LongWritable key, Text value, Context context)
			throws IOException, InterruptedException {
		String line = value.toString();
		String[] fields = line.split("\t");
		String account = fields[0];
		double in = Double.parseDouble(fields[1]);
		double out = Double.parseDouble(fields[2]);
		
		//不用每次new  几遍不重写内存引用,也很站用资源
		k.set(account, in, out);
		//value必须是NullWritable.get(),NullWritable不行,提示不是变量
		context.write(k, NullWritable.get());
	}
}

六、结束语

  如果k2 v2和k4 v4,也就是mapp的输出和reducer的输出类型不一致的话必须在Main里也设置Mapper的输出,上面的第二种就是。

job.setMapOutputKeyClass(InfoBean.class);
		job.setMapOutputValueClass(NullWritable.class);
		
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(InfoBean.class);

  否则java里不报错,加上log4j后看到类型不匹配。

MapReduce实现手机上网日志分析(排序)

标签:ret   tao   pen   count()   private   定位   auto   builder   tostring   

原文地址:http://www.cnblogs.com/hxsyl/p/6165176.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!