标签:文档 行高 用法 管理 错误 table 框架 影响 可扩展性
大型网站架构是一个系列文档,欢迎大家关注。本次分享主题:电商网站架构案例。从电商网站的需求,到单机架构,逐步演变为常用的,可供参考的分布式架构的原型。除具备功能需求外,还具备一定的高性能,高可用,可伸缩,可扩展等非功能质量需求(架构目标)。
根据实际需要,进行改造,扩展,支持千万PV,是没问题的。
电商网站案例,一共有三篇本篇主要说明网站的需求,网站初始架构,系统容量估算方法。
分布式大型网站,目前看主要有几类1.大型门户,比如网易,新浪等;2.SNS网站,比如校内,开心网等;3.电商网站:比如阿里巴巴,京东商城,国美在线,汽车之家等。大型门户一般是新闻类信息,可以使用CDN,静态化等方式优化,开心网等交互性比较多,可能会引入更多的NOSQL,分布式缓存,使用高性能的通信框架等。电商网站具备以上两类的特点,比如产品详情可以采用CDN,静态化,交互性高的需要采用NOSQL等技术。因此,我们采用电商网站作为案例,进行分析。
客户需求:
客户就是客户,不会告诉你具体要什么,只会告诉你他想要什么,我们很多时候要引导,挖掘客户的需求。好在提供了明确的参考网站。因此,下一步要进行大量的分析,结合行业,以及参考网站,给客户提供方案。
其他的略~~~~~
需求功能矩阵
需求管理传统的做法,会使用用例图或模块图(需求列表)进行需求的描述。这样做常常忽视掉一个很重要的需求(非功能需求),因此推荐大家使用需求功能矩阵,进行需求描述。
本电商网站的需求矩阵如下:
网站需求 | 功能需求 | 非功能需求 |
全品类的电子商务网站 | 分类管理,商品管理 | 方便进行多品类管理(灵活性)网站访问速度要快(高性能)图片存储的要求(海量小图片) |
用户可以在线购买商品 | 会员管理,购物车,结算功能 | 良好购物体验(可用性,性能) |
在线支付或货到付款 | 多种在线支付方式 | 支付过程要安全,数据加密(安全性)多种支付接口灵活切换(灵活性,扩展性) |
可以在线与客服沟通 | 在线客服功能 | 可靠性:即时通讯 |
商品打分评价 | 商品评论 | |
目前有成熟的进销存系统 | 对接进销存 | 属于约束条件对接时要考虑数据一致性,鲁棒性 |
支持3~5年,业务的发展 | 属于约束条件伸缩性,可扩展性 | |
3~5年用户数达到1000万 | 约束条件 | |
举办双11,双12,三八男人节等活动 | 活动管理,秒杀 | 突增访问流量(可伸缩)实时性要求(高性能) |
参考京东或国美在线 | 参考条件 |
以上是对电商网站需求的简单举例,目的是说明(1)需求分析的时候,要全面,大型分布式系统重点考虑非功能需求;(2)描述一个简单的电商需求场景,使大家对下一步的分析设计有个依据。
一般网站,刚开始的做法,是三台服务器,一台部署应用,一台部署数据库,一台部署NFS文件系统。
这是前几年比较传统的做法,之前见到一个网站10万多会员,垂直服装设计门户,N多图片。使用了一台服务器部署了应用,数据库以及图片存储。出现了很多性能问题。
如下图:
但是,目前主流的网站架构已经发生了翻天覆地的变化。一般都会采用集群的方式,进行高可用设计。至少是下面这个样子。
(1) 使用集群对应用服务器进行冗余,实现高可用;(负载均衡设备可与应用一块部署)
使用数据库主备模式,实现数据备份和高可用;
预估步骤:
客户需求:3~5年用户数达到1000万注册用户;
每秒并发数预估:
没好好学数学后悔了吧?!(不知道以上算是否有错误,呵呵~~)
服务器预估:(以tomcat服务器举例)
容量预估:70/90原则
系统CPU一般维持在70%左右的水平,高峰期达到90%的水平,是不浪费资源,并比较稳定的。内存,IO类似。
以上预估仅供参考,因为服务器配置,业务逻辑复杂度等都有影响。在此CPU,硬盘,网络等不再进行评估。
五、网站架构分析
根据以上预估,有几个问题:
大型网站一般需要做以下架构优化(优化是架构设计时,就要考虑的,一般从架构/代码级别解决,调优主要是简单参数的调整,比如JVM调优;如果调优涉及大量代码改造,就不是调优了,属于重构):
根据业务属性进行垂直切分,划分为产品子系统,购物子系统,支付子系统,评论子系统,客服子系统,接口子系统(对接如进销存,短信等外部系统)。
根据业务子系统进行等级定义,可分为核心系统和非核心系统。核心系统:产品子系统,购物子系统,支付子系统;非核心:评论子系统,客服子系统,接口子系统。
业务拆分作用:提升为子系统可由专门的团队和部门负责,专业的人做专业的事,解决模块之间耦合以及扩展性问题;每个子系统单独部署,避免集中部署导致一个应用挂了,全部应用不可用的问题。
等级定义作用:用于流量突发时,对关键应用进行保护,实现优雅降级;保护关键应用不受到影响。
拆分后的架构图:
参考部署方案2
分布式部署:将业务拆分后的应用单独部署,应用直接通过RPC进行远程通信;
集群部署:电商网站的高可用要求,每个应用至少部署两台服务器进行集群部署;
负载均衡:是高可用系统必须的,一般应用通过负载均衡实现高可用,分布式服务通过内置的负载均衡实现高可用,关系型数据库通过主备方式实现高可用。
集群部署后架构图:
缓存按照存放的位置一般可分为两类本地缓存和分布式缓存。本案例采用二级缓存的方式,进行缓存的设计。一级缓存为本地缓存,二级缓存为分布式缓存。(还有页面缓存,片段缓存等,那是更细粒度的划分)
一级缓存,缓存数据字典,和常用热点数据等基本不可变/有规则变化的信息,二级缓存缓存需要的所有缓存。当一级缓存过期或不可用时,访问二级缓存的数据。如果二级缓存也没有,则访问数据库。
缓存的比例,一般1:4,即可考虑使用缓存。(理论上是1:2即可)。
根据业务特性可使用以下缓存过期策略:
系统分割为多个子系统,独立部署后,不可避免的会遇到会话管理的问题。一般可采用Session同步,Cookies,分布式Session方式。电商网站一般采用分布式Session实现。
再进一步可以根据分布式Session,建立完善的单点登录或账户管理系统。
流程说明
结合Cache中间件,实现的分布式Session,可以很好的模拟Session会话。
大型网站需要存储海量的数据,为达到海量数据存储,高可用,高性能一般采用冗余的方式进行系统设计。一般有两种方式读写分离和分库分表。
读写分离:一般解决读比例远大于写比例的场景,可采用一主一备,一主多备或多主多备方式。
本案例在业务拆分的基础上,结合分库分表和读写分离。如下图:
相关中间件可参考Cobar(阿里,目前已不在维护),TDDL(阿里),Atlas(奇虎360),MyCat(在Cobar基础上,国内很多牛人,号称国内第一开源项目)。
分库分表后序列的问题,JOIN,事务的问题,会在分库分表主题分享中,介绍。
将多个子系统公用的功能/模块,进行抽取,作为公用服务使用。比如本案例的会员子系统就可以抽取为公用的服务。
消息队列可以解决子系统/模块之间的耦合,实现异步,高可用,高性能的系统。是分布式系统的标准配置。本案例中,消息队列主要应用在购物,配送环节。
目前使用较多的MQ有Active MQ,Rabbit MQ,Zero MQ,MS MQ等,需要根据具体的业务场景进行选择。建议可以研究下Rabbit MQ。
除了以上介绍的业务拆分,应用集群,多级缓存,单点登录,数据库集群,服务化,消息队列外。还有CDN,反向代理,分布式文件系统,大数据处理等系统。
此处不详细介绍,大家可以问度娘/Google,有机会的话也可以分享给大家。
以上是本次分享的架构总结,其中细节可参考前面分享的内容。其中还有很多可以优化和细化的地方,因为是案例分享,主要针对重要部分做了介绍,工作中需要大家根据具体的业务场景进行架构设计。
标签:文档 行高 用法 管理 错误 table 框架 影响 可扩展性
原文地址:http://www.cnblogs.com/huangyin/p/6210570.html