码迷,mamicode.com
首页 > 编程语言 > 详细

Python标准库10 多进程初步 (multiprocessing包)

时间:2016-12-24 20:31:16      阅读:231      评论:0      收藏:0      [点我收藏+]

标签:注意   代码   image   tle   python   event   com   recv   nbsp   

作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!

 

我们已经见过了使用subprocess包来创建子进程,但这个包有两个很大的局限性:1) 我们总是让subprocess运行外部的程序,而不是运行一个Python脚本内部编写的函数。2) 进程间只通过管道进行文本交流。以上限制了我们将subprocess包应用到更广泛的多进程任务。(这样的比较实际是不公平的,因为subprocessing本身就是设计成为一个shell,而不是一个多进程管理包)

 

threading和multiprocessing

(请尽量先阅读Python多线程与同步)

multiprocessing包是Python中的多进程管理包。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。该进程可以运行在Python程序内部编写的函数。该Process对象与Thread对象的用法相同,也有start(), run(), join()的方法。此外multiprocessing包中也有Lock/Event/Semaphore/Condition类 (这些对象可以像多线程那样,通过参数传递给各个进程),用以同步进程,其用法与threading包中的同名类一致。所以,multiprocessing的很大一部份与threading使用同一套API,只不过换到了多进程的情境。

但在使用这些共享API的时候,我们要注意以下几点:

Process.PID中保存有PID,如果进程还没有start(),则PID为None。

 

我们可以从下面的程序中看到Thread对象和Process对象在使用上的相似性与结果上的不同。各个线程和进程都做一件事:打印PID。但问题是,所有的任务在打印的时候都会向同一个标准输出(stdout)输出。这样输出的字符会混合在一起,无法阅读。使用Lock同步,在一个任务输出完成之后,再允许另一个任务输出,可以避免多个任务同时向终端输出。

技术分享
# Similarity and difference of multi thread vs. multi process
# Written by Vamei

import os
import threading
import multiprocessing

# worker function
def worker(sign, lock):
    lock.acquire()
    print(sign, os.getpid())
    lock.release()

# Main
print(‘Main:‘,os.getpid())

# Multi-thread
record = []
lock  = threading.Lock()
for i in range(5):
    thread = threading.Thread(target=worker,args=(‘thread‘,lock))
    thread.start()
    record.append(thread)

for thread in record:
    thread.join()

# Multi-process
record = []
lock = multiprocessing.Lock()
for i in range(5):
    process = multiprocessing.Process(target=worker,args=(‘process‘,lock))
    process.start()
    record.append(process)

for process in record:
    process.join()
技术分享

所有Thread的PID都与主程序相同,而每个Process都有一个不同的PID。

(练习: 使用mutiprocessing包将Python多线程与同步中的多线程程序更改为多进程程序)

 

Pipe和Queue

正如我们在Linux多线程中介绍的管道PIPE和消息队列message queue,multiprocessing包中有Pipe类和Queue类来分别支持这两种IPC机制。Pipe和Queue可以用来传送常见的对象。

 

1) Pipe可以是单向(half-duplex),也可以是双向(duplex)。我们通过mutiprocessing.Pipe(duplex=False)创建单向管道 (默认为双向)。一个进程从PIPE一端输入对象,然后被PIPE另一端的进程接收,单向管道只允许管道一端的进程输入,而双向管道则允许从两端输入。

下面的程序展示了Pipe的使用:

 

技术分享
# Multiprocessing with Pipe
# Written by Vamei

import multiprocessing as mul

def proc1(pipe):
    pipe.send(‘hello‘)
    print(‘proc1 rec:‘,pipe.recv())

def proc2(pipe):
    print(‘proc2 rec:‘,pipe.recv())
    pipe.send(‘hello, too‘)

# Build a pipe
pipe = mul.Pipe()

# Pass an end of the pipe to process 1
p1   = mul.Process(target=proc1, args=(pipe[0],))
# Pass the other end of the pipe to process 2
p2   = mul.Process(target=proc2, args=(pipe[1],))
p1.start()
p2.start()
p1.join()
p2.join()
技术分享

这里的Pipe是双向的。

Pipe对象建立的时候,返回一个含有两个元素的表,每个元素代表Pipe的一端(Connection对象)。我们对Pipe的某一端调用send()方法来传送对象,在另一端使用recv()来接收。

 

2) Queue与Pipe相类似,都是先进先出的结构。但Queue允许多个进程放入,多个进程从队列取出对象。Queue使用mutiprocessing.Queue(maxsize)创建,maxsize表示队列中可以存放对象的最大数量。

下面的程序展示了Queue的使用:

技术分享
# Written by Vamei
import os
import multiprocessing
import time
#==================
# input worker
def inputQ(queue):
    info = str(os.getpid()) + ‘(put):‘ + str(time.time())
    queue.put(info)

# output worker
def outputQ(queue,lock):
    info = queue.get()
    lock.acquire()
    print (str(os.getpid()) + ‘(get):‘ + info)
    lock.release()
#===================
# Main
record1 = []   # store input processes
record2 = []   # store output processes
lock  = multiprocessing.Lock()    # To prevent messy print
queue = multiprocessing.Queue(3)

# input processes
for i in range(10):
    process = multiprocessing.Process(target=inputQ,args=(queue,))
    process.start()
    record1.append(process)

# output processes
for i in range(10):
    process = multiprocessing.Process(target=outputQ,args=(queue,lock))
    process.start()
    record2.append(process)

for p in record1:
    p.join()

queue.close()  # No more object will come, close the queue

for p in record2:
    p.join()
技术分享

 一些进程使用put()在Queue中放入字符串,这个字符串中包含PID和时间。另一些进程从Queue中取出,并打印自己的PID以及get()的字符串。

 

总结

Process, Lock, Event, Semaphore, Condition

Pipe, Queue

Python标准库10 多进程初步 (multiprocessing包)

标签:注意   代码   image   tle   python   event   com   recv   nbsp   

原文地址:http://www.cnblogs.com/sunylat/p/6218074.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
分享档案
周排行
mamicode.com排行更多图片
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!