标签:最简 down specific free system bug tor 型号 pac
之前摸爬滚打总是各种坑,今天参考这篇文章终于解决了,甚是鸡冻\(≧▽≦)/,电脑不知道怎么的,安装不了16.04,就安装15.10再升级到16.04
requirements:
- Ubuntu 16.04
- python 2.7
- Flask
- tensorflow GPU 版本
安装nvidia driver
经过不断踩坑的安装,终于google到了靠谱的方法,首先检查你的NVIDIA VGA card model
sudo lshw -numeric -C display
可以看到你的显卡信息,比如我的就是 product: GM107M [GeForce GTX 950M] [10DE:139A],然后去NVDIA driver search page搜索你的显卡需要的驱动型号,页面如下:
下面是我的电脑对应的驱动版本
LINUX X64 (AMD64/EM64T) DISPLAY DRIVER
Version: 375.20
Release Date: 2016.11.18
Operating System: Linux 64-bit
Language: English (US)
File Size: 72.37 MB
从搜索的结果页面看到,我的驱动版本应该是375.20,为了再次确认一遍,你还可以使用这个命令查看你可以使用的驱动:
结果显示和搜索到的驱动版本一样,推荐也是375
好了,终于可以安装对应的驱动了,使用以下命令
version: 375
sudo apt-get install nvidia-375
什么,安装很慢,找不到包?更换一下软件源,这个自己google怎么更换,最简单的就是图形界面里面找到System->settings->Software&Updates,然后换一下源,比如阿里云或者中科大(我突然不能链接中科大镜像了,真实坑),然后再执行一下命令
sudo apt-get install mesa-common-dev
sudo apt-get install freeglut3-dev
安装完成之后,重启电脑,驱动应该就完成了!你可以在dashboard上搜索nvidia,看到像 NVIDIA X Server Settings的东西,就说明安装驱动成功了,接下来就是安装cuda8了
安装cuda8
首先也是去下载cuda toolkit 8.0,可以自己注册一个账号。
一定要选择runfile.下载完成之后,执行
sudo sh cuda_8.0.44_linux.run --override
然后就进入安装过程,开始都是End User License Agreement,你可以CTRL +C 跳过,然后accept,下面就是安装的交互界面,开始的Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 367.48?选择n,因为你已经安装驱动了。
Using more to view the EULA.
End User License Agreement
配置cuda环境变量
export PATH="$PATH:/usr/local/cuda-8.0/bin"
export LD_LIBRARY_PATH="/usr/local/cuda-8.0/lib64"
nvidia-smi
结果出现以下输出,说明配置成功
安装深度学习库cuDNN
首先??载cuDNN5.1,直接下载是非常慢的,必须走代理,我用的是终端下载的方法,注意前提是你已经注册为开发者了!
proxychains wget https://developer.nvidia.com/compute/machine-learning/cudnn/secure/v5.1/prod/8.0/cudnn-8.0-linux-x64-v5.1-tgz
proxychains wget http://developer.download.nvidia.com/compute/machine-learning/cudnn/secure/v5.1/prod/8.0/cudnn-8.0-linux-x64-v5.1.tgz?autho=1479703345_7fbb517b03361780b45a2c43277bb9ac&file=cudnn-8.0-linux-x64-v5.1.tgz
tar xvzf cudnn-8.0-linux-x64-v5.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
安装tensorflow gpu enable python 2.7 版本
sudo pip install tensorflow-gpu
export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0-cp27-none-linux_x86_64.whl
sudo pip install --upgrade $TF_BINARY_URL
验证
$python
Python 2.7.12 (default, Jul 1 2016, 15:12:24)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:111] successfully opened CUDA library libcurand.so locally
>>> quit()
大功告成!
错误
1.libcudart.so.8.0: cannot open shared object file: No such file or directory
======================================================================================
【如果每次开启都显示此错误,则需要打开变量文件设置变量】
-
打开终端并输入:
sudo gedit ~/.bashrc。
-
-
前面的步骤会打开.bashrc文件,在其末尾添加:
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda
-
使其立即生效,在终端执行:
source ~/.bashrc
或者重启电脑即可。
=============================================================================================================
kinny@kinny-Lenovo-XiaoXin:~/Study/tensorflow-0.11.0rc0/tensorflow/models/image/mnist$ python convolutional.py
Traceback (most recent call last):
File "convolutional.py", line 34, in <module>
import tensorflow as tf
File "/usr/local/lib/python2.7/dist-packages/tensorflow/__init__.py", line 23, in <module>
from tensorflow.python import *
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/__init__.py", line 49, in <module>
from tensorflow.python import pywrap_tensorflow
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/pywrap_tensorflow.py", line 28, in <module>
_pywrap_tensorflow = swig_import_helper()
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/pywrap_tensorflow.py", line 24, in swig_import_helper
_mod = imp.load_module(‘_pywrap_tensorflow‘, fp, pathname, description)
ImportError: libcudart.so.8.0: cannot open shared object file: No such file or directory
方法是设置环境变量,把以前设置的cuda环境变量改成一下这样,这个是tensorflow官网上要求的环境变量;{}
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda
2.TypeError: run() got an unexpected keyword argument ‘argv’
Traceback (most recent call last):
File "convolutional.py", line 339, in <module>
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
TypeError: run() got an unexpected keyword argument ‘argv‘
方法是把main里面的argv参数去掉
使用python 虚拟环境
使用gpu版本运行mnist例子非常慢,基本卡死在数据下载和读取上了!为了比较gpu和cpu的性能,使用虚拟环境安装了tensorflow的cpu版本;
sudo apt-get install python-pip python-dev python-virtualenv
mkdir py2virtualenv
virtualenv --system-site-packages ~/py2virtualenv/tensorflowcpu
source ~/py2virtualenv/tensorflowcpu/bin/activate
export TF_BINARY_URL=https:
原来cpu版本数据读取和下载很快!cpu适合做IO和简单逻辑运算和加减,但是gpu不行,gpu不适合做高IO和加减法,但是在做矩阵运算表现十分强悍,我在把mnist数据集下载到本地后,分别使用cpu版本和gpu版本跑tensorflow/tensorflow/models/image/mnist/convolutional.py,结果显示:
GPU在矩阵密集运算方面完虐cpu,大概是6倍。我的是GTX 950M,不知道现在的GTX 1080M是什么情况。
Caffe 深度学习入门教程 http://www.linuxidc.com/Linux/2016-11/136774.htm
Ubuntu 16.04下Matlab2014a+Anaconda2+OpenCV3.1+Caffe安装 http://www.linuxidc.com/Linux/2016-07/132860.htm
Ubuntu 16.04系统下CUDA7.5配置Caffe教程 http://www.linuxidc.com/Linux/2016-07/132859.htm
Caffe在Ubuntu 14.04 64bit 下的安装 http://www.linuxidc.com/Linux/2015-07/120449.htm
深度学习框架Caffe在Ubuntu下编译安装 http://www.linuxidc.com/Linux/2016-07/133225.htm
Caffe + Ubuntu 14.04 64bit + CUDA 6.5 配置说明 http://www.linuxidc.com/Linux/2015-04/116444.htm
Ubuntu 16.04上安装Caffe http://www.linuxidc.com/Linux/2016-08/134585.htm
Caffe配置简明教程 ( Ubuntu 14.04 / CUDA 7.5 / cuDNN 5.1 / OpenCV 3.1 ) http://www.linuxidc.com/Linux/2016-09/135016.htm
Ubuntu 16.04上安装Caffe(CPU only) http://www.linuxidc.com/Linux/2016-09/135034.htm
更多Ubuntu相关信息见Ubuntu 专题页面 http://www.linuxidc.com/topicnews.aspx?tid=2
本文原文链接地址:http://www.linuxidc.com/Linux/2016-11/137561.htm
【转】Ubuntu 16.04安装配置TensorFlow GPU版本
标签:最简 down specific free system bug tor 型号 pac
原文地址:http://www.cnblogs.com/xia-Autumn/p/6228911.html