标签:扩展 存储 return ima name using tree div 表示
最近学习树的概念,有关二叉树的实现算法记录下来。。。
不过学习之前要了解的预备知识:树的概念;二叉树的存储结构;二叉树的遍历方法。。
二叉树的存储结构主要了解二叉链表结构,也就是一个数据域,两个指针域,(分别为指向左右孩子的指针),从下面程序1,二叉树的存储结构可以看出。
二叉树的遍历方法:主要有前序遍历,中序遍历,后序遍历,层序遍历。(层序遍历下一篇再讲,本篇主要讲的递归法)
如这样一个二叉树:
它的前序遍历顺序为:ABDGHCEIF(规则是先是根结点,再前序遍历左子树,再前序遍历右子树)
它的中序遍历顺序为:GDHBAEICF(规则是先中序遍历左子树,再是根结点,再是中序遍历右子树)
它的后序遍历顺序为:GHDBIEFCA(规则是先后序遍历左子树,再是后序遍历右子树,再是根结点)
如果不懂的话,可以参看有关数据结构的书籍。。
1,二叉树的存储结构(二叉链表)
//二叉树的二叉链表结构,也就是二叉树的存储结构,1个数据域,2个指针域(分别指向左右孩子) typedef struct BiTNode { ElemType data; struct BiTNode *lchild, *rchild; }BiTNode, *BiTree;
2,首先要建立一个二叉树,建立二叉树必须要了解二叉树的遍历方法。
//二叉树的建立,按前序遍历的方式建立二叉树,当然也可以以中序或后序的方式建立二叉树 void CreateBiTree(BiTree *T) { ElemType ch; cin >> ch; if (ch == ‘#‘) *T = NULL; //保证是叶结点 else { *T = (BiTree)malloc(sizeof(BiTNode)); //if (!*T) //exit(OVERFLOW); //内存分配失败则退出。 (*T)->data = ch;//生成结点 CreateBiTree(&(*T)->lchild);//构造左子树 CreateBiTree(&(*T)->rchild);//构造右子树 } }
3.二叉树的遍历(递归方式,非递归方式见下篇):
主要有三种方法:
/递归方式前序遍历二叉树 void PreOrderTraverse(BiTree T, int level) { if (T == NULL) return;
/*此处表示对遍历的树结点进行的操作,根据你自己的要求进行操作,这里只是输出了结点的数据*/ //operation1(T->data); operation2(T->data, level); //输出了层数 PreOrderTraverse(T->lchild, level + 1); PreOrderTraverse(T->rchild, level + 1); } //递归方式中序遍历二叉树 void InOrderTraverse(BiTree T,int level) { if(T==NULL) return; InOrderTraverse(T->lchild,level+1); //operation1(T->data); operation2(T->data, level); //输出了层数 InOrderTraverse(T->rchild,level+1); } //递归方式后序遍历二叉树 void PostOrderTraverse(BiTree T,int level) { if(T==NULL) return; PostOrderTraverse(T->lchild,level+1); PostOrderTraverse(T->rchild,level+1); //operation1(T->data); operation2(T->data, level); //输出了层数 }
4.完整代码:
#include<iostream> #include<stdlib.h> using namespace std; typedef char ElemType; //二叉树的二叉链表结构,也就是二叉树的存储结构,1个数据域,2个指针域(分别指向左右孩子) typedef struct BiTNode { ElemType data; struct BiTNode *lchild, *rchild; }BiTNode, *BiTree; //二叉树的建立,按前序遍历的方式建立二叉树,当然也可以以中序或后序的方式建立二叉树 void CreateBiTree(BiTree *T) { ElemType ch; cin >> ch; if (ch == ‘#‘) *T = NULL; //保证是叶结点 else { *T = (BiTree)malloc(sizeof(BiTNode)); //if (!*T) //exit(OVERFLOW); //内存分配失败则退出。 (*T)->data = ch;//生成结点 CreateBiTree(&(*T)->lchild);//构造左子树 CreateBiTree(&(*T)->rchild);//构造右子树 } } //表示对遍历到的结点数据进行的处理操作,此处操作是将树结点前序遍历输出 void operation1(ElemType ch) { cout << ch << " "; } //此处在输出的基础上,并输出层数 void operation2(ElemType ch, int level) { cout << ch << "在第" << level << "层" << endl; } //递归方式前序遍历二叉树 void PreOrderTraverse(BiTree T, int level) { if (T == NULL) return; /*此处表示对遍历的树结点进行的操作,根据你自己的要求进行操作,这里只是输出了结点的数据*/ //operation1(T->data); operation2(T->data, level); //输出了层数 PreOrderTraverse(T->lchild, level + 1); PreOrderTraverse(T->rchild, level + 1); } //递归方式中序遍历二叉树 void InOrderTraverse(BiTree T,int level) { if(T==NULL) return; InOrderTraverse(T->lchild,level+1); //operation1(T->data); operation2(T->data, level); //输出了层数 InOrderTraverse(T->rchild,level+1); } //递归方式后序遍历二叉树 void PostOrderTraverse(BiTree T,int level) { if(T==NULL) return; PostOrderTraverse(T->lchild,level+1); PostOrderTraverse(T->rchild,level+1); //operation1(T->data); operation2(T->data, level); //输出了层数 } int main() { int level = 1; //表示层数 BiTree T = NULL; cout << "请以前序遍历的方式输入扩展二叉树:"; //类似输入AB#D##C## CreateBiTree(&T);// 建立二叉树,没有树,怎么遍历 cout << "递归前序遍历输出为:" << endl; PreOrderTraverse(T, level);//进行前序遍历,其中operation1()和operation2()函数表示对遍历的结点数据进行的处理操作 cout << endl; cout << "递归中序遍历输出为:" << endl; InOrderTraverse(T, level); cout << endl; cout << "递归后序遍历输出为:" << endl; PostOrderTraverse(T, level); cout << endl; return 0; }
注意:这里有几个知识点补充下:
(1)建立二叉树时,这里是以前序遍历的方式,输入的是扩展二叉树,也就是要告诉计算机什么是叶结点,否则将一直递归,当输入“#”时,指针指向NULL,说明是叶结点。
如图为扩展二叉树:(前序遍历为:ABDG##H###CE#I##F##)
(2)operation1( )函数只是对各个结点的输出;
operation2( )函数不仅输出了各个结点,同时输出了结点所在的层数。(调试时可以只先运行一个)
5.运行结果
只是运行了operation2( )函数,有层数输出:
或者运行只运行operation1( )函数
标签:扩展 存储 return ima name using tree div 表示
原文地址:http://www.cnblogs.com/liuamin/p/6269950.html