码迷,mamicode.com
首页 > 编程语言 > 详细

数据挖掘中的模式发现(二)Apriori算法

时间:2017-01-28 11:30:03      阅读:397      评论:0      收藏:0      [点我收藏+]

标签:ret   var   south   family   line   ems   soc   pru   产生   

基本概念

对于AB

  1. 支持度(support):

    P(AB),既有A又有B的概率

  2. 置信度(Confidence Strength):

    conf(AB)=sup(AB)sup(A)=P(B|A)

    即,在A发生的事件中同时发生B的概率

    例如购物篮分析:牛奶?面包

    例子:[支持度:3%,置信度:40%]

    支持度3%:意味着3%顾客同时购买牛奶和面包

    置信度40%:意味着购买牛奶的顾客40%也购买面包

  3. 候选集(Candidate itemset):

    通过向下合并得出的项集。

    定义为C[k]。

  4. 频繁集(Frequent itemset):
    支持度大于等于特定的最小支持度(Minimum Support/minsup)的项集。

    表示为L[k]。

  5. 提升比率(提升度Lift):

    lift(XY)=lift(YX)=conf(XY)supp(Y)=conf(YX)supp(X)=P(X?Y)P(X)P(Y)

  6. 向下封闭属性(Downward Closure Property)

    如果一个项集满足某个最小支持度要求,那么这个项集的任何非空子集必须都满足这个最小支持度。

Apriori算法简介

Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成向下封闭、检测两个阶段来挖掘频繁项集。

Apriori算法应用广泛,可用于消费市场价格分析,猜测顾客的消费习惯;网络安全领域中的入侵检测技术;可用在用于高校管理中,根据挖掘规则可以有效地辅助学校管理部门有针对性的开展贫困助学工作;也可用在移动通信领域中,指导运营商的业务运营和辅助业务提供商的决策制定。

挖掘步骤:

1.依据支持度找出所有频繁项集(频度)

2.依据置信度产生关联规则(强度)

实现步骤

Apriori使用一种称作逐层搜索的迭代方法,“K-1项集”用于搜索“K项集”。

首先,扫描整个事务,找出频繁1-项集的集合,该集合记作L1。L1用于找频繁“2项集”的集合L2,而L2用于找L3。如此下去,直到不能找到“K项集”。找每个Lk都需要一次数据库扫描。

核心思想是:连接步和剪枝步。连接步是自连接,原则是保证前k-2项相同,并按照字典顺序连接。剪枝步,是使任一频繁项集的所有非空子集也必须是频繁的。反之,如果某个候选的非空子集不是频繁的,那么该候选肯定不是频繁的,从而可以将其从CK中删除。

简单的讲,1、发现频繁项集,过程为(1)扫描(2)计数(3)比较(4)产生频繁项集(5)连接、剪枝,产生候选项集 重复步骤(1)~(5)直到不能发现更大的频集

产生关联规则

根据前面提到的置信度的定义,关联规则的产生如下:

(1)对于每个频繁项集L,产生L的所有非空子集;

(2)对于L的每个非空子集S,如果

P(L)P(S)min_conf

则输出规则 SL?S

注:L-S表示在项集L中除去S子集的项集

技术分享

伪代码

伪代码描述:  
 // 找出频繁 1 项集  
     L1 =find_frequent_1-itemsets(D);   
     For(k=2;Lk-1 !=null;k++){  
// 产生候选,并剪枝  
        Ck =apriori_gen(Lk-1 );   
// 扫描 D 进行候选计数  
        For each 事务t  in D{   
            Ct =subset(Ck,t); // 得到 t 的子集  
            For each 候选 c 属于 Ct  
                c.count++;  
        }  
        //返回候选项集中不小于最小支持度的项集  
        Lk ={c 属于 Ck | c.count>=min_sup}  
}  
Return L= 所有的频繁集;  
第一步:连接(joinProcedure apriori_gen (Lk-1 :frequent(k-1)-itemsets)  
      For each 项集 l1 属于 Lk-1  
         For each 项集 l2 属于 Lk-1  
            If( (l1 [1]=l2 [1])&&( l1 [2]=l2 [2])&& ……&& (l1 [k-2]=l2 [k-2])&&(l1 [k-1]<l2 [k-1]) )   
then{  
                    c = l1 连接 l2    // 连接步:产生候选  
                  //若k-1项集中已经存在子集c则进行剪枝  
                   if has_infrequent_subset(c, Lk-1 ) then  
                       delete c; // 剪枝步:删除非频繁候选  
                   else add c to Ck;  
                   }  
          Return Ck;  
第二步:剪枝(prune)   
 Procedure has_infrequent_sub (c:candidate k-itemset; Lk-1 :frequent(k-1)-itemsets)  
         For each (k-1)-subset s of c  
            If s 不属于 Lk-1 then  
               Return true;  
        Return false;  

代码

#coding:utf-8  
samples = [  
    ["I1","I2","I5"],  
    ["I2","I4"],  
    ["I2","I3"],  
    ["I1","I2","I4"],  
    ["I1","I3"],  
    ["I2","I3"],  
    ["I1","I3"],  
    ["I1","I2","I3","I5"],  
    ["I1","I2","I3"]  
]  
min_support = 2  
min_confidence = 0.6  
fre_list = list()  
def get_c1():  
    global record_list  
    global record_dict  
    new_dict = dict()  
    for row in samples:  
        for item in row:  
            if item not in fre_list:  
                fre_list.append(item)  
                new_dict[item] = 1  
            else:  
                new_dict[item] = new_dict[item] + 1  
    fre_list.sort()  
    print "candidate set:"  
    print_dict(new_dict)  
    for key in fre_list:  
        if new_dict[key] < min_support:  
            del new_dict[key]  
    print "after pruning:"  
    print_dict(new_dict)  
    record_list = fre_list  
    record_dict = record_dict  
def get_candidateset():  
    new_list = list()  
    #自连接  
    for i in range(0,len(fre_list)):  
        for j in range(0,len(fre_list)):  
            if i == j:  
                continue  
            #如果两个k项集可以自连接,必须保证它们有k-1项是相同的  
            if has_samesubitem(fre_list[i],fre_list[j]):  
                curitem = fre_list[i] + ‘,‘ + fre_list[j]  
                curitem = curitem.split(",")  
                curitem = list(set(curitem))  
                curitem.sort()  
                curitem = ‘,‘.join(curitem)  
                #如果一个k项集要成为候选集,必须保证它的所有子集都是频繁的  
                if has_infresubset(curitem) == False and already_constains(curitem,new_list) == False:  
                    new_list.append(curitem)  
    new_list.sort()  
    return new_list  
def has_samesubitem(str1,str2):  
    str1s = str1.split(",")  
    str2s = str2.split(",")  
    if len(str1s) != len(str2s):  
        return False  
    nums = 0  
    for items in str1s:  
        if items in str2s:  
            nums += 1  
            str2s.remove(items)  
    if nums == len(str1s) - 1:  
        return True  
    else:  
        return False  
def judge(candidatelist):  
    # 计算候选集的支持度  
    new_dict = dict()  
    for item in candidatelist:  
        new_dict[item] = get_support(item)  
    print "candidate set:"  
    print_dict(new_dict)  
    #剪枝  
    #频繁集的支持度要大于最小支持度  
    new_list = list()  
    for item in candidatelist:  
        if new_dict[item] < min_support:  
            del new_dict[item]  
            continue  
        else:  
            new_list.append(item)  
    global fre_list  
    fre_list = new_list  
    print "after pruning:"  
    print_dict(new_dict)  
    return new_dict  
def has_infresubset(item):  
    # 由于是逐层搜索的,所以对于Ck候选集只需要判断它的k-1子集是否包含非频繁集即可  
    subset_list = get_subset(item.split(","))  
    for item_list in subset_list:  
        if already_constains(item_list,fre_list) == False:  
            return True  
    return False  
def get_support(item,splitetag=True):  
    if splitetag:  
        items = item.split(",")  
    else:  
        items = item.split("^")  
    support = 0  
    for row in samples:  
        tag = True  
        for curitem in items:  
            if curitem not in row:  
                tag = False  
                continue  
        if tag:  
            support += 1  
    return support  
def get_fullpermutation(arr):  
    if len(arr) == 1:  
        return [arr]  
    else:  
        newlist = list()  
        for i in range(0,len(arr)):  
            sublist = get_fullpermutation(arr[0:i]+arr[i+1:len(arr)])  
            for item in sublist:  
                curlist = list()  
                curlist.append(arr[i])  
                curlist.extend(item)  
                newlist.append(curlist)  
        return newlist  
def get_subset(arr):  
    newlist = list()  
    for i in range(0,len(arr)):  
        arr1 = arr[0:i]+arr[i+1:len(arr)]  
        newlist1 = get_fullpermutation(arr1)  
        for newlist_item in newlist1:  
            newlist.append(newlist_item)  
    newlist.sort()  
    newlist = remove_dumplicate(newlist)  
    return newlist  
def remove_dumplicate(arr):  
    newlist = list()  
    for i in range(0,len(arr)):  
        if already_constains(arr[i],newlist) == False:  
            newlist.append(arr[i])  
    return newlist  
def already_constains(item,curlist):  
    import types  
    items = list()  
    if type(item) is types.StringType:  
        items = item.split(",")  
    else:  
        items = item  
    for i in range(0,len(curlist)):  
        curitems = list()  
        if type(curlist[i]) is types.StringType:  
            curitems = curlist[i].split(",")  
        else:  
            curitems = curlist[i]  
        if len(set(items)) == len(curitems) and len(list(set(items).difference(set(curitems)))) == 0:  
            return True  
    return False  
def print_dict(curdict):  
    keys = curdict.keys()  
    keys.sort()  
    for curkey in keys:  
        print "%s:%s"%(curkey,curdict[curkey])  
# 计算关联规则的方法  
def get_all_subset(arr):  
    rtn = list()  
    while True:  
        subset_list = get_subset(arr)  
        stop = False  
        for subset_item_list in subset_list:  
            if len(subset_item_list) == 1:  
                stop = True  
            rtn.append(subset_item_list)  
        if stop:  
            break  
    return rtn  
def get_all_subset(s):  
    from itertools import combinations  
    return sum(map(lambda r: list(combinations(s, r)), range(1, len(s)+1)), [])  
def cal_associative_rule(frelist):  
    rule_list = list()  
    rule_dict = dict()  
    for fre_item in frelist:  
        fre_items = fre_item.split(",")  
        subitem_list = get_all_subset(fre_items)  
        for subitem in subitem_list:  
            # 忽略为为自身的子集  
            if len(subitem) == len(fre_items):  
                continue  
            else:  
                difference = set(fre_items).difference(subitem)  
                rule_list.append("^".join(subitem)+"->"+"^".join(difference))  
    print "The rule is:"  
    for rule in rule_list:  
        conf = cal_rule_confidency(rule)  
        print rule,conf  
        if conf >= min_confidence:  
            rule_dict[rule] = conf  
    print "The associative rule is:"  
    for key in rule_list:  
        if key in rule_dict.keys():  
            print key,":",rule_dict[key]  
def cal_rule_confidency(rule):  
    rules = rule.split("->")  
    support1 = get_support("^".join(rules),False)  
    support2 = get_support(rules[0],False)  
    if support2 == 0:  
        return 0  
    rule_confidency = float(support1)/float(support2)  
    return rule_confidency  
if __name__ == ‘__main__‘:  
    record_list = list()  
    record_dict = dict()  
    get_c1()  
    # 不断进行自连接和剪枝,直到得到最终的频繁集为止;终止条件是,如果自连接得到的已经不再是频繁集  
    # 那么取最后一次得到的频繁集作为结果  
    while True:  
        record_list = fre_list  
        new_list = get_candidateset()  
        judge_dict = judge(new_list)  
        if len(judge_dict) == 0:  
            break  
        else:  
            record_dict = judge_dict  
    print "The final frequency set is:"  
    print record_list  

    # 根据频繁集计算关联规则  
    cal_associative_rule(record_list)  

数据挖掘中的模式发现(二)Apriori算法

标签:ret   var   south   family   line   ems   soc   pru   产生   

原文地址:http://blog.csdn.net/u013007900/article/details/54755273

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!