标签:html 计数 实现原理 ora 查询 自己 group by column sql优化
转载:http://wulijun.github.io/2012/08/24/mysql-sql-optimization.html
count(1)和count(primary_key) 优于 count(*)
很多人为了统计记录条数,就使用 count(1) 和 count(primary_key) 而不是 count() ,他们认为这样性能更好,其实 这是一个误区。对于有些场景,这样做可能性能会更差,应为数据库对 count() 计数操作做了一些特别的优化。
count(column) 和 count(*) 是一样的
这个误区甚至在很多的资深工程师或者是 DBA 中都普遍存在,很多人都会认为这是理所当然的。实际上,count(column)和 count() 是一个完全不一样的操作,所代表的意义也完全不一样。count(column) 是表示结果集中有多少个column字段 不为空的记录,count() 是表示整个结果集有多少条记录
select a,b from … 比 select a,b,c from … 可以让数据库访问更少的数据量
这个误区主要存在于大量的开发人员中,主要原因是对数据库的存储原理不是太了解。实际上,大多数关系型数据库都是按照 行(row)的方式存储,而数据存取操作都是以一个固定大小的IO单元(被称作 block 或者 page)为单位,一般为4KB, 8KB… 大多数时候,每个IO单元中存储了多行,每行都是存储了该行的所有字段(lob等特殊类型字段除外)。所以,我们是 取一个字段还是多个字段,实际上数据库在表中需要访问的数据量其实是一样的。
当然,也有例外情况,那就是我们的这个查询在索引中就可以完成,也就是说当只取 a,b两个字段的时候,不需要回表,而c 这个字段不在使用的索引中,需要回表取得其数据。在这样的情况下,二者的IO量会有较大差异。
order by 一定需要排序操作
我们知道索引数据实际上是有序的,如果我们的需要的数据和某个索引的顺序一致,而且我们的查询又通过这个索引来执行, 那么数据库一般会省略排序操作,而直接将数据返回,因为数据库知道数据已经满足我们的排序需求了。实际上,利用索引 来优化有排序需求的 SQL,是一个非常重要的优化手段。
延伸阅读:MySQL ORDER BY 的实现分析 ,MySQL 中 GROUP BY 基本实现原理 以及 MySQL DISTINCT 的基本实现原理 这3篇文章中有更为深入的分析,尤其是第一篇
执行计划中有 filesort 就会进行磁盘文件排序
有这个误区其实并不能怪我们,而是因为 MySQL 开发者在用词方面的问题。filesort 是我们在使用 explain 命令查看一条 SQL 的执行计划的时候可能会看到在 “Extra” 一列显示的信息。实际上,只要一条 SQL 语句需要进行排序操作,都会显示 “Using filesort”,这并不表示就会有文件排序操作。
延伸阅读:理解 MySQL Explain 命令输出中的filesort,我在这里有更为详细的介绍。
尽量少 join
MySQL 的优势在于简单,但这在某些方面其实也是其劣势。MySQL 优化器效率高,但是由于其统计信息的量有限,优化器 工作过程出现偏差的可能性也就更多。对于复杂的多表 Join,一方面由于其优化器受限,再者在 Join 这方面所下的功夫 还不够,所以性能表现离 Oracle 等关系型数据库前辈还是有一定距离。但如果是简单的单表查询,这一差距就会极小甚至 在有些场景下要优于这些数据库前辈。
尽量少排序
排序操作会消耗较多的 CPU 资源,所以减少排序可以在缓存命中率高等 IO 能力足够的场景下会较大影响 SQL 的响应时间。 对于MySQL来说,减少排序有多种办法,比如:
尽量避免 select *
很多人看到这一点后觉得比较难理解,上面不是在误区中刚刚说 select 子句中字段的多少并不会影响到读取的数据吗? 是的,大多数时候并不会影响到 IO 量,但是当我们还存在 order by 操作的时候,select 子句中的字段多少会在很 大程度上影响到我们的排序效率,这一点可以通过我之前一篇介绍 MySQL ORDER BY 的实现分析 的文章中有较为 详细的介绍。
此外,上面误区中不是也说了,只是大多数时候是不会影响到 IO 量,当我们的查询结果仅仅只需要在索引中就能找到的 时候,还是会极大减少 IO 量的。
尽量用 join 代替子查询
虽然 Join 性能并不佳,但是和 MySQL 的子查询比起来还是有非常大的性能优势。MySQL 的子查询执行计划一直存在较 大的问题,虽然这个问题已经存在多年,但是到目前已经发布的所有稳定版本中都普遍存在,一直没有太大改善。虽然 官方也在很早就承认这一问题,并且承诺尽快解决,但是至少到目前为止我们还没有看到哪一个版本较好的解决了这一问题。
尽量少 or
当 where 子句中存在多个条件以“或”并存的时候,MySQL 的优化器并没有很好的解决其执行计划优化问题,再加上 MySQL 特 有的 SQL 与 Storage 分层架构方式,造成了其性能比较低下,很多时候使用 union all 或者是union(必要的时候)的方式 来代替“or”会得到更好的效果。
尽量用 union all 代替 union
union 和 union all 的差异主要是前者需要将两个(或者多个)结果集合并后再进行唯一性过滤操作,这就会涉及到排序, 增加大量的 CPU 运算,加大资源消耗及延迟。所以当我们可以确认不可能出现重复结果集或者不在乎重复结果集的时候, 尽量使用 union all 而不是 union。
尽量早过滤
这一优化策略其实最常见于索引的优化设计中(将过滤性更好的字段放得更靠前)。在 SQL 编写中同样可以使用这一原则 来优化一些 Join 的 SQL。比如我们在多个表进行分页数据查询的时候,我们最好是能够在一个表上先过滤好数据分好页, 然后再用分好页的结果集与另外的表 Join,这样可以尽可能多的减少不必要的 IO 操作,大大节省 IO 操作所消耗的时间。
避免类型转换
这里所说的“类型转换”是指 where 子句中出现 column 字段的类型和传入的参数类型不一致的时候发生的类型转换:
优先优化高并发的 SQL,而不是执行频率低某些“大”SQL
对于破坏性来说,高并发的 SQL 总是会比低频率的来得大,因为高并发的 SQL 一旦出现问题,甚至不会给我们任何喘息的 机会就会将系统压跨。而对于一些虽然需要消耗大量 IO 而且响应很慢的 SQL,由于频率低,即使遇到,最多就是让整个系 统响应慢一点,但至少可能撑一会儿,让我们有缓冲的机会。
从全局出发优化,而不是片面调整
SQL 优化不能是单独针对某一个进行,而应充分考虑系统中所有的 SQL,尤其是在通过调整索引优化 SQL 的执行计划的时候, 千万不能顾此失彼,因小失大。
尽可能对每一条运行在数据库中的SQL进行 explain
优化 SQL,需要做到心中有数,知道 SQL 的执行计划才能判断是否有优化余地,才能判断是否存在执行计划问题。在对数据 库中运行的 SQL 进行了一段时间的优化之后,很明显的问题 SQL 可能已经很少了,大多都需要去发掘,这时候就需要进行 大量的 explain 操作收集执行计划,并判断是否需要进行优化。
标签:html 计数 实现原理 ora 查询 自己 group by column sql优化
原文地址:http://www.cnblogs.com/bing-yu12/p/6408347.html