标签:复杂sql 聚合过滤
1. 定义
城市等级(city_rank)小于3且GMV大于6000或者城市等级大与3且GMV大于5000定义为高消费(gq)
城市等级(city_rank)小于3且广告收入大于360或者城市等级大与3且广告收入大于300定义为高收入(pq)
flow_rank: 0低流量 1中流量 2高流量
合作商跨多个城市,选择city_rank最小值为其city_rank,毛收入多城市取和,广告毛收入按合作商收取
2. 要求查询
GMV城市最高小于10000、总和小于30000、非首次合作、如GMV有量毛利大于0.02
高消费额、低收入、非高流量;低消费额、高收入、非高流量;低消费额、低收入、中流量;低消费额、低收入、低流量,且合作商gmv超过2000
3. 实现
select distinct tc.partner_id as partnerId, tc.contract_id as contractId, tc.contract_num as contractNum, tc.bd_id as bdId, tc.org_id as orgId, if(tc.org_scale=‘NULL‘,‘0‘,tc.org_scale) as orgScale from table tc join ( select tc.partner_id, case when min(city_rank)<=3 and avg(t.gmv)>=6000 then 1 when min(city_rank)>3 and avg(t.gmv)>=5000 then 1 else 0 end as gq, case when min(city_rank)<=3 and avg(t.gross_profit+t.advertisement_gross_profit)>=360 then 1 when min(city_rank)>3 and avg(t.gross_profit+t.advertisement_gross_profit)>=300 then 1 else 0 end as pq, max(tc.flow_rank) as fq, sum(t.gmv) as gmv from ( select partner_id,poi_id,min(city_rank) as city_rank, max(tc.flow_rank) as flow_rank, sum(is_old) as is_old from table tc where tc.partner_id>=#{start} and tc.partner_id<=#{end} group by partner_id,poi_id ) tc join ( select poi_id, sum(gmv) as gmv, sum(gross_profit) as gross_profit, avg(advertisement_gross_profit) as advertisement_gross_profit from table tc where tc.partner_id>=#{start} and tc.partner_id<=#{end} group by poi_id ) t on tc.poi_id=t.poi_id group by tc.partner_id having max(t.gmv)<10000 and sum(t.gmv)<30000 and sum(tc.is_old)>0 and case when sum(gmv)>0 then sum(gross_profit)/sum(gmv)>0.02 else 1=1 end ) t2 on t.partner_id=tc.partner_id where ]]> <if test="type ==0"> ((t2.gq=1 and t2.pq=0 and fq!=2) or (t2.gq=0 and t2.pq=1 and fq!=2) or (t2.gq=0 and t2.pq=0 and fq=1) or (t2.gq=0 and t2.pq=0 and fq=0 and t2.gmv>2000)) </if>
4. 关键
4.1 t2
a) tc子查询计算流量、是否首次合作
b) t子查询计算毛利、毛收入
c) 计算合作商消费额、流量、收入类型,查询满足要求1的合作商
d) having子查询过滤,case子句限制毛利率
4.2 要求2
where过滤
5. 总结
大量使用了聚合计算、过滤,业务功能使用一条SQL实现
如果用代码实现类似的功能,复杂程度可以想象,每个聚合都会对应一大坨代码
本文出自 “Ying:好记性不如烂笔头” 博客,请务必保留此出处http://yingtju.blog.51cto.com/3760152/1908433
标签:复杂sql 聚合过滤
原文地址:http://yingtju.blog.51cto.com/3760152/1908433