标签:timeout enum self mutex 输出 编译 parent lob 函数
线程
1.什么是线程?
线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。
2.python GIL全局解释器锁(仅需了解)
无论你启多少个线程,你有多少个cpu, Python在执行的时候会淡定的在同一时刻只允许一个线程运行
首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL
这篇文章透彻的剖析了GIL对python多线程的影响,强烈推荐看一下:http://www.dabeaz.com/python/UnderstandingGIL.pdf
3.python threading模块
threading模块建立在_thread 模块之上。thread模块以低级、原始的方式来处理和控制线程,而threading 模块通过对thread 进行二次封装,提供了更方便的 api来处理线程。
线程有两种调用方式,如下:
1)直接调用
import threading
import time
def sayhi(num): #定义每个线程要运行的函数
print("running on number:%s" %num)
time.sleep(3)
if __name__ == ‘__main__‘:
t1 = threading.Thread(target=sayhi,args=(1,)) #生成一个线程实例 target=函数名 args传元组,元组中是参数
t2 = threading.Thread(target=sayhi,args=(2,)) #生成另一个线程实例
t1.start() #启动线程
t2.start() #启动另一个线程
print(t1.getName()) #获取线程名
print(t2.getName())
2)继承调用
import threading import time class MyThread(threading.Thread): def __init__(self,num): threading.Thread.__init__(self) self.num = num def run(self):#定义每个线程要运行的函数 print("running on number:%s" %self.num) time.sleep(3) if __name__ == ‘__main__‘: t1 = MyThread(1) t2 = MyThread(2) t1.start() t2.start()
Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。
thread 模块提供的其他方法:
除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:
4.Join & Daemon
join 等待线程执行完后,其他线程再继续执行
import threading,time def run(n,sleep_time): print("test...",n) time.sleep(sleep_time) print("test...done", n) if __name__ == ‘__main__‘: t1 = threading.Thread(target=run,args=("t1",2)) t2 = threading.Thread(target=run,args=("t2",3)) # 两个同时执行,然后等待t1执行完成后,主线程和子线程再开始执行 t1.start() t2.start() t1.join() # 等待t1 print("main thread") # 程序输出 # test... t1 # test... t2 # test...done t1 # main thread # test...done t2
Daemon 守护进程
t.setDaemon() 设置为后台线程或前台线程(默认:False);通过一个布尔值设置线程是否为守护线程,必须在执行start()方法之后才可以使用。如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止;如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止
import threading,time def run(n): print(‘[%s]------running----\n‘ % n) time.sleep(2) print(‘--done--‘) def main(): for i in range(5): t = threading.Thread(target=run, args=[i, ]) t.start() t.join(1) print(‘starting thread‘, t.getName()) m = threading.Thread(target=main, args=[]) m.setDaemon(True) # 将main线程设置为Daemon线程,它做为程序主线程的守护线程,当主线程退出时, # m线程也会退出,由m启动的其它子线程会同时退出,不管是否执行完任务 m.start() m.join(timeout=2) print("---main thread done----") # 程序输出 # [0]------running---- # starting thread Thread-2 # [1]------running---- # --done-- # ---main thread done----
5.线程锁(互斥锁Mutex)
我们使用线程对数据进行操作的时候,如果多个线程同时修改某个数据,可能会出现不可预料的结果,为了保证数据的准确性,引入了锁的概念。
例:假设列表A的所有元素就为0,当一个线程从前向后打印列表的所有元素,另外一个线程则从后向前修改列表的元素为1,那么输出的时候,列表的元素就会一部分为0,一部分为1,这就导致了数据的不一致。锁的出现解决了这个问题。
不加锁:
import time import threading def addNum(): global num # 在每个线程中都获取这个全局变量 print(‘--get num:‘, num) time.sleep(1) num -= 1 # 对此公共变量进行-1操作 num = 100 # 设定一个共享变量 thread_list = [] for i in range(100): t = threading.Thread(target=addNum) t.start() thread_list.append(t) for t in thread_list: # 等待所有线程执行完毕 t.join() print(‘final num:‘, num)
加锁:
import time import threading def addNum(): global num # 在每个线程中都获取这个全局变量 print(‘--get num:‘, num) time.sleep(1) lock.acquire() # 修改数据前加锁 num -= 1 # 对此公共变量进行-1操作 lock.release() # 修改后释放 num = 100 # 设定一个共享变量 thread_list = [] lock = threading.Lock() # 生成全局锁 for i in range(100): t = threading.Thread(target=addNum) t.start() thread_list.append(t) for t in thread_list: # 等待所有线程执行完毕 t.join() print(‘final num:‘, num)
GIL VS LOCK
机智的同学可能会问到这个问题,就是既然你之前说过了,Python已经有一个GIL来保证同一时间只能有一个线程来执行了,为什么这里还需要lock? 注意啦,这里的lock是用户级的lock,跟那个GIL没关系 ,具体我们通过下图来看一下+配合我现场讲给大家,就明白了。
6.递归锁
说白了就是在一个大锁中还要再包含子锁
import threading,time def run1(): print("grab the first part data") lock.acquire() global num num += 1 lock.release() return num def run2(): print("grab the second part data") lock.acquire() global num2 num2 += 1 lock.release() return num2 def run3(): lock.acquire() res = run1() print(‘--------between run1 and run2-----‘) res2 = run2() lock.release() print(res, res2) if __name__ == ‘__main__‘: num, num2 = 0, 0 lock = threading.RLock() for i in range(10): t = threading.Thread(target=run3) t.start() while threading.active_count() != 1: print(threading.active_count()) else: print(‘----all threads done---‘) print(num, num2)
threading.RLock和threading.Lock 的区别:
RLock允许在同一线程中被多次acquire。而Lock却不允许这种情况。 如果使用RLock,那么acquire和release必须成对出现,即调用了n次acquire,必须调用n次的release才能真正释放所占用的琐。
import threading lock = threading.Lock() #Lock对象 lock.acquire() lock.acquire() #产生了死琐。 lock.release() lock.release()
import threading rLock = threading.RLock() #RLock对象 rLock.acquire() rLock.acquire() #在同一线程内,程序不会堵塞。 rLock.release() rLock.release()
1. 多进程multiprocessing
multiprocessing包是Python中的多进程管理包,是一个跨平台版本的多进程模块。与threading.Thread类似,它可以利用multiprocessing.Process对象来创建一个进程。该进程可以运行在Python程序内部编写的函数。该Process对象与Thread对象的用法类似。
创建一个Process实例,可用start()方法启动。
join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。
from multiprocessing import Process
import time
def f(name):
time.sleep(2)
print(‘hello‘, name)
if __name__ == ‘__main__‘:
p = Process(target=f, args=(‘bob‘,))
p.start()
p.join()
写个程序,对比下主进程和子进程的ID:
from multiprocessing import Process import os def info(title): print(title) print(‘进程名称:‘, __name__) print(‘父进程ID:‘, os.getppid()) print(‘子进程ID:‘, os.getpid()) print("\n\n") def f(name): info(‘\033[31;1mcalled from child process function f\033[0m‘) print(‘hello‘, name) if __name__ == ‘__main__‘: info(‘\033[32;1mmain process line\033[0m‘) p = Process(target=f, args=(‘bob‘,)) p.start()
2. 进程间通信
不同进程间内存是不共享的,要想实现两个进程间的数据交换,可以使用Queue、Pipe、Manager,其中:
1)Queue \ Pipe 只是实现进程间数据的传递;
2)Manager 实现了进程间数据的共享,即多个进程可以修改同一份数据;
2.1 Queue
Queue允许多个进程放入,多个进程从队列取出对象,先进先出。(使用方法跟threading里的queue差不多)
from multiprocessing import Process,Queue def f(qq): qq.put([42,None,"hello"]) qq.put([43,None,"HI"]) if __name__ == ‘__main__‘: q = Queue() p = Process(target=f,args=(q,)) p.start() print(q.get()) print(q.get()) p.join()
2.2 Pipe
Pipe也是先进先出
from multiprocessing import Process, Pipe def f(conn): conn.send([42, None, ‘儿子发送的消息‘]) conn.send([42, None, ‘儿子又发消息啦‘]) print("接收父亲的消息:",conn.recv()) conn.close() if __name__ == ‘__main__‘: parent_conn, child_conn = Pipe() p = Process(target=f, args=(child_conn,)) p.start() print(parent_conn.recv()) # prints "[42, None, ‘hello‘]" print(parent_conn.recv()) # prints "[42, None, ‘hello‘]" parent_conn.send("回家吃饭!") # prints "[42, None, ‘hello‘]" p.join()
2.3 Manager
Manager对象类似于服务器与客户之间的通信 (server-client),与我们在Internet上的活动很类似。我们用一个进程作为服务器,建立Manager来真正存放资源。其它的进程可以通过参数传递或者根据地址来访问Manager,建立连接后,操作服务器上的资源。在防火墙允许的情况下,我们完全可以将Manager运用于多计算机,从而模仿了一个真实的网络情境。
from multiprocessing import Process,Manager import os def f(d,l): d[os.getpid()] = os.getpid() l.append(os.getpid()) print(l) if __name__ == "__main__": with Manager() as manager: d = manager.dict()#生成一个字典,可在多个进程间共享和传递 l = manager.list(range(5))#生成一个列表,可在多个进程间实现共享和传递 p_list = [] for i in range(10): p = Process(target=f,args=(d,l)) p.start() p_list.append(p) for res in p_list:#等待结果 res.join()
3. 进程池
进程池 (Process Pool)可以创建多个进程。这些进程就像是随时待命的士兵,准备执行任务(程序)。一个进程池中可以容纳多个待命的士兵。
进程池有两种方法:
1)串行:apply
2)并行:apply_async
from multiprocessing import Process,Pool import time import os def Foo(i): time.sleep(2) print("in process",os.getpid()) return i+100 def Bar(arg): ‘‘‘回调函数‘‘‘ print("-->>exec done:",arg,os.getpid()) if __name__ == "__main__": pool = Pool(processes=3)#允许进程池同时放入3个进程 print("主进程",os.getpid()) for i in range(10): pool.apply_async(func=Foo,args=(i,),callback=Bar) print(‘end‘) pool.close() pool.join()#进程池中进程执行完毕后在关闭;如果注释则程序直接关闭
使用回调函数的目的是:在父进程中执行可以提高效率;(比如连接数据库,写回调函数的话,父进程连接一次数据库即可;如果使用子进程,则需要连接多次)
4. 其他(lock)
lock:屏幕上打印的锁,防止打印显示混乱
from multiprocessing import Process, Lock def f(l, i): #上锁 l.acquire() try: print(‘hello world‘, i) finally: #解锁 l.release() #因为屏幕是共享的,定义锁的目的是打印的信息不换乱,而不是顺序不会乱 if __name__ == ‘__main__‘: #定义锁 lock = Lock() for num in range(10): Process(target=f, args=(lock, num)).start()
标签:timeout enum self mutex 输出 编译 parent lob 函数
原文地址:http://www.cnblogs.com/yinuoxiaofang/p/6610027.html