码迷,mamicode.com
首页 > 编程语言 > 详细

POJ1061-青蛙的约会---扩展欧几里德算法求最小整数解

时间:2017-04-08 12:56:56      阅读:270      评论:0      收藏:0      [点我收藏+]

标签:mit   出发点   fine   ota   desc   不定方程   欧几里德算法   print   put   

 

扩展欧几里得算法模板

#include <cstdio>
#include <cstring>
#define ll long long

using namespace std;

ll extend_gcd(ll a, ll b, ll &x, ll &y)
{
    if(b == 0)
    {
        x = 1, y = 0;
        return a;
    }
    else
    {
        ll r = extend_gcd(b, a%b, y, x);
        y -= x*(a/b);
        return r;
    }
}

1.对于形如a*x0 + b*y0 = n的不定方程为了求解x0和y0,可以通过扩展欧几里得先求出满足a*x + b*y = gcd(a, b)的x和y。

2.容易得到,若(x-y)%gcd(a,b)==0,则该不定方程有整数解,否则无符合条件的整数解。

3.得到x和y后,可以通过x0 = x*n / gcd(a, b)这个x0相当关键,求出x0.

4.在实际问题当中,我们需要的往往是最小整数解,我们可以通过下面的方法求出最小整数解:

    令t = b/gcd(a, b),x是方程a*x + b*y = n的一个特解,则xmin = (x % t + t) % t

                       青蛙的约会

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 113227   Accepted: 23091

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

分析:
当两只青蛙跳t步后,A的坐标为x+mt-p1L(p1∈Z且x+mt-p1L<L),B的坐标为y+nt-p2L(p2∈Z且y+nt-p2L<L), A和B相遇的充分必要条件是x+mt-p1L = y+nt-p2L。
整理可得 (x-y) + (m-n)t = (p1-p2)L, 即 (n-m)t + (p1-p2)L = x-y
设p = p1 - p2 整理得 (n-m) * t + L * p = x-y   
看出a * x + b * y = gcd(a, b)的样子了没?
 
调用extend_gcd(n-m, L, t, p)可以算出gcd(n-m, L), t, p。之后再用上面的方法算出最小整数解就可以了。
 
#include "cstdio"
#include "iostream"
using namespace std;
#define LL long long
LL extgcd(LL a,LL b,LL&x,LL&y)///模板
{
    if(b==0){
        x=1;y=0;
        return a;
    }
    LL ans=extgcd(b,a%b,y,x);
    y-=a/b*x;
    return ans;
}

int main()
{
    LL n,m,t,l,x,y,p;
    while(~scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l))
    {
        LL ans=extgcd(n-m,l,t,p);
        if((x-y)%ans){///1.
            printf("Impossible\n");
        }
        else
        {
            ///求最小整数解的算法
            t=(x-y)/ans*t;///首先令x为一个特解  2.
            LL temp=(l/ans);
            t=(t%temp+temp)%temp;///再根据公式计算  3.
            printf("%lld\n",t);
        }
    }
}

 

总结:对于此类题,
我们需要做的是,1.看懂公式熟记公式
        2.吸收这份来自数学的伟大力量

POJ1061-青蛙的约会---扩展欧几里德算法求最小整数解

标签:mit   出发点   fine   ota   desc   不定方程   欧几里德算法   print   put   

原文地址:http://www.cnblogs.com/kimsimple/p/6681165.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!