标签:txt 结合 原理 会话 参数调用 glibc cipher rup down
原文出处:【Linux Tools Quick Tutorial】
GDB是一个由GNU开源组织发布的、UNIX/LINUX操作系统下的、基于命令行的、功能强大的程序调试工具。 对于一名Linux下工作的c++程序员,gdb是必不可少的工具;
对C/C++程序的调试,需要在编译前就加上-g选项:
$g++ -g hello.cpp -o hello
调试可执行文件:
$gdb <program>
program也就是你的执行文件,一般在当前目录下。
调试core文件(core是程序非法执行后core dump后产生的文件):
$gdb <program> <core dump file> $gdb program core.11127
调试服务程序:
$gdb <program> <PID> $gdb hello 11127
如果你的程序是一个服务程序,那么你可以指定这个服务程序运行时的进程ID。gdb会自动attach上去,并调试他。program应该在PATH环境变量中搜索得到。
启动gdb后,进入到交互模式,通过以下命令完成对程序的调试;注意高频使用的命令一般都会有缩写,熟练使用这些缩写命令能提高调试的效率;
注解
交互模式下直接回车的作用是重复上一指令,对于单步调试非常方便;
cgdb可以看作gdb的界面增强版,用来替代gdb的 gdb -tui。cgdb主要功能是在调试时进行代码的同步显示,这无疑增加了调试的方便性,提高了调试效率。界面类似vi,符合unix/linux下开发人员习惯;如果熟悉gdb和vi,几乎可以立即使用cgdb。
示例:查看test程序运行所依赖的库:
/opt/app/todeav1/test$ldd test libstdc++.so.6 => /usr/lib64/libstdc++.so.6 (0x00000039a7e00000) libm.so.6 => /lib64/libm.so.6 (0x0000003996400000) libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00000039a5600000) libc.so.6 => /lib64/libc.so.6 (0x0000003995800000) /lib64/ld-linux-x86-64.so.2 (0x0000003995400000)
通过上面的信息,我们可以得到以下几个信息:
如果依赖的某个库找不到,通过这个命令可以迅速定位问题所在;
注解
原理: ldd不是个可执行程式,而只是个shell脚本; ldd显示可执行模块的dependency的工作原理,其实质是通过ld-linux.so(elf动态库的装载器)来实现的。ld-linux.so模块会先于executable模块程式工作,并获得控制权,因此当上述的那些环境变量被设置时,ld-linux.so选择了显示可执行模块的dependency。
lsof(list open files)是一个查看当前系统文件的工具。在linux环境下,任何事物都以文件的形式存在,通过文件不仅仅可以访问常规数据,还可以访问网络连接和硬件。如传输控制协议 (TCP) 和用户数据报协议 (UDP) 套接字等,系统在后台都为该应用程序分配了一个文件描述符,该文件描述符提供了大量关于这个应用程序本身的信息。
lsof打开的文件可以是:
$lsof| more COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME init 1 root cwd DIR 253,0 4096 2 / init 1 root rtd DIR 253,0 4096 2 / init 1 root txt REG 253,0 150352 1310795 /sbin/init init 1 root mem REG 253,0 65928 5505054 /lib64/libnss_files-2.12.so init 1 root mem REG 253,0 1918016 5521405 /lib64/libc-2.12.so init 1 root mem REG 253,0 93224 5521440 /lib64/libgcc_s-4.4.6-20120305.so.1 init 1 root mem REG 253,0 47064 5521407 /lib64/librt-2.12.so init 1 root mem REG 253,0 145720 5521406 /lib64/libpthread-2.12.so ...
说明:
lsof输出各列信息的意义如下:
COMMAND:进程的名称
PID:进程标识符
PPID:父进程标识符(需要指定-R参数)
USER:进程所有者
PGID:进程所属组
FD:文件描述符,应用程序通过文件描述符识别该文件。如cwd、txt等:
(1)cwd:表示current work dirctory,即:应用程序的当前工作目录,这是该应用程序启动的目录,除非它本身对这个目录进行更改
(2)txt :该类型的文件是程序代码,如应用程序二进制文件本身或共享库,如上列表中显示的 /sbin/init 程序
(3)lnn:library references (AIX);
(4)er:FD information error (see NAME column);
(5)jld:jail directory (FreeBSD);
(6)ltx:shared library text (code and data);
(7)mxx :hex memory-mapped type number xx.
(8)m86:DOS Merge mapped file;
(9)mem:memory-mapped file;
(10)mmap:memory-mapped device;
(11)pd:parent directory;
(12)rtd:root directory;
(13)tr:kernel trace file (OpenBSD);
(14)v86 VP/ix mapped file;
(15)0:表示标准输入
(16)1:表示标准输出
(17)2:表示标准错误
一般在标准输出、标准错误、标准输入后还跟着文件状态模式:r、w、u等
(1)u:表示该文件被打开并处于读取/写入模式
(2)r:表示该文件被打开并处于只读模式
(3)w:表示该文件被打开并处于
(4)空格:表示该文件的状态模式为unknow,且没有锁定
(5)-:表示该文件的状态模式为unknow,且被锁定
同时在文件状态模式后面,还跟着相关的锁
(1)N:for a Solaris NFS lock of unknown type;
(2)r:for read lock on part of the file;
(3)R:for a read lock on the entire file;
(4)w:for a write lock on part of the file;(文件的部分写锁)
(5)W:for a write lock on the entire file;(整个文件的写锁)
(6)u:for a read and write lock of any length;
(7)U:for a lock of unknown type;
(8)x:for an SCO OpenServer Xenix lock on part of the file;
(9)X:for an SCO OpenServer Xenix lock on the entire file;
(10)space:if there is no lock.
TYPE:文件类型,如DIR、REG等,常见的文件类型:
(1)DIR:表示目录
(2)CHR:表示字符类型
(3)BLK:块设备类型
(4)UNIX: UNIX 域套接字
(5)FIFO:先进先出 (FIFO) 队列
(6)IPv4:网际协议 (IP) 套接字
DEVICE:指定磁盘的名称
SIZE:文件的大小
NODE:索引节点(文件在磁盘上的标识)
NAME:打开文件的确切名称
$lsof /bin/bash COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME mysqld_sa 2169 root txt REG 253,0 938736 4587562 /bin/bash ksmtuned 2334 root txt REG 253,0 938736 4587562 /bin/bash bash 20121 root txt REG 253,0 938736 4587562 /bin/bash
$lsof -u username
-u 选项,u是user的缩写
$lsof -c mysql
-c 选项将会列出所有以mysql这个进程开头的程序的文件,其实你也可以写成 lsof | grep mysql, 但是第一种方法明显比第二种方法要少打几个字符;
$lsof -u test -c mysql
$lsof -p 11968
$lsof -i
$lsof -i tcp $lsof -n -i tcp COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME svnserve 11552 weber 3u IPv4 3799399 0t0 TCP *:svn (LISTEN) redis-ser 25501 weber 4u IPv4 113150 0t0 TCP 127.0.0.1:6379 (LISTEN)
$lsof -i :3306
$lsof -a -u test -i
$lsof -d description(like 2)
示例:
$lsof -d 3 | grep PARSER1 tail 6499 tde 3r REG 253,3 4514722 417798 /opt/applog/open/log/HOSTPARSER1_ERROR_141217.log.001
说明: 0表示标准输入,1表示标准输出,2表示标准错误,从而可知:所以大多数应用程序所打开的文件的 FD 都是从 3 开始
$lsof -i 4 -a -p 1234
lsof -i @nf5260i5-td:20,21,80 -r 3
Linux中的ps命令是Process Status的缩写。ps命令用来列出系统中当前运行的那些进程。ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信息,就可以使用top命令。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而 ps 命令就是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行和运行的状态、进程是否结束、进程有没有僵死、哪些进程占用了过多的资源等等。总之大部分信息都是可以通过执行该命令得到的。
ps 为我们提供了进程的一次性的查看,它所提供的查看结果并不动态连续的;如果想对进程时间监控,应该用 top linux下的任务管理器 工具。
注:kill 命令用于杀死进程。
linux上进程有5种状态:
ps工具标识进程的5种状态码:
[root@localhost test6]# ps -A PID TTY TIME CMD 1 ? 00:00:00 init 2 ? 00:00:01 migration/0 3 ? 00:00:00 ksoftirqd/0 4 ? 00:00:01 migration/1 5 ? 00:00:00 ksoftirqd/1 6 ? 00:29:57 events/0 7 ? 00:00:00 events/1 8 ? 00:00:00 khelper 49 ? 00:00:00 kthread 54 ? 00:00:00 kblockd/0 55 ? 00:00:00 kblockd/1 56 ? 00:00:00 kacpid 217 ? 00:00:00 cqueue/0 ……省略部分结果
[root@localhost test6]# ps -u root PID TTY TIME CMD 1 ? 00:00:00 init 2 ? 00:00:01 migration/0 3 ? 00:00:00 ksoftirqd/0 4 ? 00:00:01 migration/1 5 ? 00:00:00 ksoftirqd/1 6 ? 00:29:57 events/0 7 ? 00:00:00 events/1 8 ? 00:00:00 khelper 49 ? 00:00:00 kthread 54 ? 00:00:00 kblockd/0 55 ? 00:00:00 kblockd/1 56 ? 00:00:00 kacpid ……省略部分结果
[root@localhost test6]# ps -ef UID PID PPID C STIME TTY TIME CMD root 1 0 0 Nov02 ? 00:00:00 init [3] root 2 1 0 Nov02 ? 00:00:01 [migration/0] root 3 1 0 Nov02 ? 00:00:00 [ksoftirqd/0] root 4 1 0 Nov02 ? 00:00:01 [migration/1] root 5 1 0 Nov02 ? 00:00:00 [ksoftirqd/1] root 6 1 0 Nov02 ? 00:29:57 [events/0] root 7 1 0 Nov02 ? 00:00:00 [events/1] root 8 1 0 Nov02 ? 00:00:00 [khelper] root 49 1 0 Nov02 ? 00:00:00 [kthread] root 54 49 0 Nov02 ? 00:00:00 [kblockd/0] root 55 49 0 Nov02 ? 00:00:00 [kblockd/1] root 56 49 0 Nov02 ? 00:00:00 [kacpid]
[root@localhost test6]# ps -ef|grep ssh root 2720 1 0 Nov02 ? 00:00:00 /usr/sbin/sshd root 17394 2720 0 14:58 ? 00:00:00 sshd: root@pts/0 root 17465 17398 0 15:57 pts/0 00:00:00 grep ssh
[root@localhost test6]# ps -l F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD 4 S 0 17398 17394 0 75 0 - 16543 wait pts/0 00:00:00 bash 4 R 0 17469 17398 0 77 0 - 15877 - pts/0 00:00:00 ps
[root@localhost test6]# ps aux USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 1 0.0 0.0 10368 676 ? Ss Nov02 0:00 init [3] root 2 0.0 0.0 0 0 ? S< Nov02 0:01 [migration/0] root 3 0.0 0.0 0 0 ? SN Nov02 0:00 [ksoftirqd/0] root 4 0.0 0.0 0 0 ? S< Nov02 0:01 [migration/1] root 5 0.0 0.0 0 0 ? SN Nov02 0:00 [ksoftirqd/1] root 6 0.0 0.0 0 0 ? S< Nov02 29:57 [events/0] root 7 0.0 0.0 0 0 ? S< Nov02 0:00 [events/1] root 8 0.0 0.0 0 0 ? S< Nov02 0:00 [khelper] root 49 0.0 0.0 0 0 ? S< Nov02 0:00 [kthread] root 54 0.0 0.0 0 0 ? S< Nov02 0:00 [kblockd/0] root 55 0.0 0.0 0 0 ? S< Nov02 0:00 [kblockd/1] root 56 0.0 0.0 0 0 ? S< Nov02 0:00 [kacpid]
此命令可显示每个进程的栈跟踪。pstack 命令必须由相应进程的属主或 root 运行。可以使用 pstack 来确定进程挂起的位置。此命令允许使用的唯一选项是要检查的进程的 PID。请参见 proc(1) 手册页。
这个命令在排查进程问题时非常有用,比如我们发现一个服务一直处于work状态(如假死状态,好似死循环),使用这个命令就能轻松定位问题所在;可以在一段时间内,多执行几次pstack,若发现代码栈总是停在同一个位置,那个位置就需要重点关注,很可能就是出问题的地方;
示例:查看bash程序进程栈:
/opt/app/tdev1$ps -fe| grep bash tdev1 7013 7012 0 19:42 pts/1 00:00:00 -bash tdev1 11402 11401 0 20:31 pts/2 00:00:00 -bash tdev1 11474 11402 0 20:32 pts/2 00:00:00 grep bash /opt/app/tdev1$pstack 7013 #0 0x00000039958c5620 in __read_nocancel () from /lib64/libc.so.6 #1 0x000000000047dafe in rl_getc () #2 0x000000000047def6 in rl_read_key () #3 0x000000000046d0f5 in readline_internal_char () #4 0x000000000046d4e5 in readline () #5 0x00000000004213cf in ?? () #6 0x000000000041d685 in ?? () #7 0x000000000041e89e in ?? () #8 0x00000000004218dc in yyparse () #9 0x000000000041b507 in parse_command () #10 0x000000000041b5c6 in read_command () #11 0x000000000041b74e in reader_loop () #12 0x000000000041b2aa in main ()
strace常用来跟踪进程执行时的系统调用和所接收的信号。 在Linux世界,进程不能直接访问硬件设备,当进程需要访问硬件设备(比如读取磁盘文件,接收网络数据等等)时,必须由用户态模式切换至内核态模式,通过系统调用访问硬件设备。strace可以跟踪到一个进程产生的系统调用,包括参数,返回值,执行消耗的时间。
每一行都是一条系统调用,等号左边是系统调用的函数名及其参数,右边是该调用的返回值。 strace 显示这些调用的参数并返回符号形式的值。strace 从内核接收信息,而且不需要以任何特殊的方式来构建内核。
$strace cat /dev/null execve("/bin/cat", ["cat", "/dev/null"], [/* 22 vars */]) = 0 brk(0) = 0xab1000 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory) mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f29379a7000 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory) ...
-c 统计每一系统调用的所执行的时间,次数和出错的次数等.
-d 输出strace关于标准错误的调试信息.
-f 跟踪由fork调用所产生的子进程.
-ff 如果提供-o filename,则所有进程的跟踪结果输出到相应的filename.pid中,pid是各进程的进程号.
-F 尝试跟踪vfork调用.在-f时,vfork不被跟踪.
-h 输出简要的帮助信息.
-i 输出系统调用的入口指针.
-q 禁止输出关于脱离的消息.
-r 打印出相对时间关于,,每一个系统调用.
-t 在输出中的每一行前加上时间信息.
-tt 在输出中的每一行前加上时间信息,微秒级.
-ttt 微秒级输出,以秒了表示时间.
-T 显示每一调用所耗的时间.
-v 输出所有的系统调用.一些调用关于环境变量,状态,输入输出等调用由于使用频繁,默认不输出.
-V 输出strace的版本信息.
-x 以十六进制形式输出非标准字符串
-xx 所有字符串以十六进制形式输出.
-a column
设置返回值的输出位置.默认 为40.
-e expr
指定一个表达式,用来控制如何跟踪.格式如下:
[qualifier=][!]value1[,value2]...
qualifier只能是 trace,abbrev,verbose,raw,signal,read,write其中之一.value是用来限定的符号或数字.默认的 qualifier是 trace.感叹号是否定符号.例如:
-eopen等价于 -e trace=open,表示只跟踪open调用.而-etrace!=open表示跟踪除了open以外的其他调用.有两个特殊的符号 all 和 none.
注意有些shell使用!来执行历史记录里的命令,所以要使用\\.
-e trace=set
只跟踪指定的系统 调用.例如:-e trace=open,close,rean,write表示只跟踪这四个系统调用.默认的为set=all.
-e trace=file
只跟踪有关文件操作的系统调用.
-e trace=process
只跟踪有关进程控制的系统调用.
-e trace=network
跟踪与网络有关的所有系统调用.
-e strace=signal
跟踪所有与系统信号有关的 系统调用
-e trace=ipc
跟踪所有与进程通讯有关的系统调用
-e abbrev=set
设定 strace输出的系统调用的结果集.-v 等与 abbrev=none.默认为abbrev=all.
-e raw=set
将指 定的系统调用的参数以十六进制显示.
-e signal=set
指定跟踪的系统信号.默认为all.如 signal=!SIGIO(或者signal=!io),表示不跟踪SIGIO信号.
-e read=set
输出从指定文件中读出 的数据.例如:
-e read=3,5
-e write=set
输出写入到指定文件中的数据.
-o filename
将strace的输出写入文件filename
-p pid
跟踪指定的进程pid.
-s strsize
指定输出的字符串的最大长度.默认为32.文件名一直全部输出.
-u username
以username 的UID和GID执行被跟踪的命令
strace -f -F -o ~/straceout.txt myserver
-f -F选项告诉strace同时跟踪fork和vfork出来的进程,-o选项把所有strace输出写到~/straceout.txt里 面,myserver是要启动和调试的程序。
strace -o output.txt -T -tt -e trace=all -p 28979
跟踪28979进程的所有系统调用(-e trace=all),并统计系统调用的花费时间,以及开始时间(并以可视化的时分秒格式显示),最后将记录结果存在output.txt文件里面。
ipcs是Linux下显示进程间通信设施状态的工具。可以显示消息队列、共享内存和信号量的信息。对于程序员非常有用,普通的系统管理员一般用不到此指令。
$ipcs ------ Shared Memory Segments -------- key shmid owner perms bytes nattch status ------ Semaphore Arrays -------- key semid owner perms nsems 0x00000000 229376 weber 600 1 ------ Message Queues -------- key msqid owner perms used-bytes messages
分别查询IPC资源:
$ipcs -m 查看系统使用的IPC共享内存资源
$ipcs -q 查看系统使用的IPC队列资源
$ipcs -s 查看系统使用的IPC信号量资源
示例:有个IPCKEY(51036),需要查询其是否被占用;
首先通过计算器将其转为十六进制:
51036 -> c75c
如果知道是被共享内存占用:
$ipcs -m | grep c75c 0x0000c75c 40403197 tdea3 666 536870912 2
如果不确定,则直接查找:
$ipcs | grep c75c 0x0000c75c 40403197 tdea3 666 536870912 2 0x0000c75c 5079070 tdea3 666 4
ipcs -l ------ Shared Memory Limits -------- max number of segments = 4096 max seg size (kbytes) = 4194303 max total shared memory (kbytes) = 1073741824 min seg size (bytes) = 1 ------ Semaphore Limits -------- max number of arrays = 128 max semaphores per array = 250 max semaphores system wide = 32000 max ops per semop call = 32 semaphore max value = 32767 ------ Messages: Limits -------- max queues system wide = 2048 max size of message (bytes) = 524288 default max size of queue (bytes) = 5242880
以上输出显示,目前这个系统的允许的最大内存为1073741824kb;最大可使用128个信号量,每个消息的最大长度为524288bytes;
以linux系统为例,在root用户下修改/etc/sysctl.conf 文件,保存后使用sysctl -p生效:
$cat /etc/sysctl.conf # 一个消息的最大长度 kernel.msgmax = 524288 # 一个消息队列上的最大字节数 # 524288*10 kernel.msgmnb = 5242880 #最大消息队列的个数 kernel.msgmni=2048 #一个共享内存区的最大字节数 kernel.shmmax = 17179869184 #系统范围内最大共享内存标识数 kernel.shmmni=4096 #每个信号灯集的最大信号灯数 系统范围内最大信号灯数 每个信号灯支持的最大操作数 系统范围内最大信号灯集数 #此参数为系统默认,可以不用修改 #kernel.sem = <semmsl> <semmni>*<semmsl> <semopm> <semmni> kernel.sem = 250 32000 32 128
显示输入不带标志的 ipcs:的输出:
$ipcs IPC status from /dev/mem as of Mon Aug 14 15:03:46 1989 T ID KEY MODE OWNER GROUP Message Queues: q 0 0x00010381 -Rrw-rw-rw- root system q 65537 0x00010307 -Rrw-rw-rw- root system q 65538 0x00010311 -Rrw-rw-rw- root system q 65539 0x0001032f -Rrw-rw-rw- root system q 65540 0x0001031b -Rrw-rw-rw- root system q 65541 0x00010339--rw-rw-rw- root system q 6 0x0002fe03 -Rrw-rw-rw- root system Shared Memory: m 65537 0x00000000 DCrw------- root system m 720898 0x00010300 -Crw-rw-rw- root system m 65539 0x00000000 DCrw------- root system Semaphores: s 131072 0x4d02086a --ra-ra---- root system s 65537 0x00000000 --ra------- root system s 1310722 0x000133d0 --ra------- 7003 30720
使用ipcrm 命令来清除IPC资源:这个命令同时会将与ipc对象相关联的数据也一起移除。当然,只有root用户,或者ipc对象的创建者才有这项权利;
ipcrm用法:
ipcrm -M shmkey 移除用shmkey创建的共享内存段 ipcrm -m shmid 移除用shmid标识的共享内存段 ipcrm -Q msgkey 移除用msqkey创建的消息队列 ipcrm -q msqid 移除用msqid标识的消息队列 ipcrm -S semkey 移除用semkey创建的信号 ipcrm -s semid 移除用semid标识的信号
清除当前用户创建的所有的IPC资源:
ipcs -q | awk ‘{ print "ipcrm -q "$2}‘ | sh > /dev/null 2>&1; ipcs -m | awk ‘{ print "ipcrm -m "$2}‘ | sh > /dev/null 2>&1; ipcs -s | awk ‘{ print "ipcrm -s "$2}‘ | sh > /dev/null 2>&1;
查询队列Queue:
$ipcs -q ------ Message Queues -------- key msqid owner perms used-bytes messages 0x49060005 58261504 user1 660 0 0 0x4f060005 58294273 user1 660 0 0 ...
找出第6列大于0的服务:
$ ipcs -q |grep user1 |awk ‘{if($5>0) print $0}‘ 0x00000000 1071579324 user1 644 1954530 4826 0x00000000 1071644862 user1 644 1961820 4844 0x00000000 1071677631 user1 644 1944810 4802 0x00000000 1071710400 user1 644 1961820 4844
top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器。top是一个动态显示过程,即可以通过用户按键来不断刷新当前状态.如果在前台执行该命令,它将独占前台,直到用户终止该程序为止.比较准确的说,top命令提供了实时的对系统处理器的状态监视.它将显示系统中CPU最“敏感”的任务列表.该命令可以按CPU使用.内存使用和执行时间对任务进行排序;而且该命令的很多特性都可以通过交互式命令或者在个人定制文件中进行设定。
$top top - 09:14:56 up 264 days, 20:56, 1 user, load average: 0.02, 0.04, 0.00 Tasks: 87 total, 1 running, 86 sleeping, 0 stopped, 0 zombie Cpu(s): 0.0%us, 0.2%sy, 0.0%ni, 99.7%id, 0.0%wa, 0.0%hi, 0.0%si, 0.2%st Mem: 377672k total, 322332k used, 55340k free, 32592k buffers Swap: 397308k total, 67192k used, 330116k free, 71900k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 1 root 20 0 2856 656 388 S 0.0 0.2 0:49.40 init 2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd 3 root 20 0 0 0 0 S 0.0 0.0 7:15.20 ksoftirqd/0 4 root RT 0 0 0 0 S 0.0 0.0 0:00.00 migration/0
下面列出一些常用的 top命令操作指令
- q:退出top命令
- <Space>:立即刷新
- s:设置刷新时间间隔
- c:显示命令完全模式
- t::显示或隐藏进程和CPU状态信息
- m:显示或隐藏内存状态信息
- l:显示或隐藏uptime信息
- f:增加或减少进程显示标志
- S:累计模式,会把已完成或退出的子进程占用的CPU时间累计到父进程的MITE+
- P:按%CPU使用率排行
- T:按MITE+排行
- M:按%MEM排行
- u:指定显示用户进程
- r:修改进程renice值
- kkill:进程
- i:只显示正在运行的进程
- W:保存对top的设置到文件^/.toprc,下次启动将自动调用toprc文件的设置。
- h:帮助命令。
- q:退出
注:强调一下,使用频率最高的是P、T、M,因为通常使用top,我们就想看看是哪些进程最耗cpu资源、占用的内存最多; 注:通过”shift + >”或”shift + <”可以向右或左改变排序列 如果只需要查看内存:可用free命令。只查看uptime信息(第一行),可用uptime命令;
在top基本视图中,按键盘数字“1”,可监控每个逻辑CPU的状况;
[rdtfr@bl685cb4-t ^]$ top top - 09:10:44 up 20 days, 16:51, 4 users, load average: 3.82, 4.40, 4.40 Tasks: 1201 total, 10 running, 1189 sleeping, 0 stopped, 2 zombie Cpu0 : 1.3%us, 2.3%sy, 0.0%ni, 96.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu1 : 1.3%us, 2.6%sy, 0.0%ni, 96.1%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu2 : 1.0%us, 2.0%sy, 0.0%ni, 92.5%id, 0.0%wa, 0.0%hi, 4.6%si, 0.0%st Cpu3 : 3.9%us, 7.8%sy, 0.0%ni, 83.2%id, 0.0%wa, 0.0%hi, 5.2%si, 0.0%st Cpu4 : 4.2%us, 10.4%sy, 0.0%ni, 63.8%id, 0.0%wa, 0.0%hi, 21.5%si, 0.0%st Cpu5 : 6.8%us, 12.7%sy, 0.0%ni, 80.5%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Cpu6 : 2.9%us, 7.2%sy, 0.0%ni, 85.3%id, 0.0%wa, 0.0%hi, 4.6%si, 0.0%st Cpu7 : 6.2%us, 13.0%sy, 0.0%ni, 75.3%id, 0.0%wa, 0.0%hi, 5.5%si, 0.0%st Mem: 32943888k total, 32834216k used, 109672k free, 642704k buffers Swap: 35651576k total, 5761928k used, 29889648k free, 16611500k cached
在top基本视图中,按键盘“b”(打开/关闭加亮效果);
命令:top -c
[rdtfr@bl685cb4-t ^]$ top -c top - 09:14:35 up 20 days, 16:55, 4 users, load average: 5.77, 5.01, 4.64 Tasks: 1200 total, 5 running, 1192 sleeping, 0 stopped, 3 zombie Cpu(s): 4.4%us, 6.0%sy, 0.0%ni, 83.8%id, 0.2%wa, 0.0%hi, 5.5%si, 0.0%st Mem: 32943888k total, 32842896k used, 100992k free, 591484k buffers Swap: 35651576k total, 5761808k used, 29889768k free, 16918824k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 2013 apache 18 0 403m 88m 5304 S 25.0 0.3 6:37.44 /usr/sbin/httpd 18335 pubtest 22 0 65576 996 728 R 7.8 0.0 0:00.24 netstat -naltp 16499 rdtfare 15 0 13672 2080 824 R 2.6 0.0 0:00.38 top -c 29684 rdtfare 15 0 1164m 837m 14m S 2.3 2.6 148:47.54 ./autodata data1.txt 12976 pubtest 18 0 238m 9000 1932 S 1.6 0.0 439:28.44 tscagent -s TOEV_P
命令:top -p pidid
/opt/app/tdv1/config#top -p 17265 top - 09:17:34 up 455 days, 17:55, 2 users, load average: 3.76, 4.56, 4.46 Tasks: 1 total, 0 running, 1 sleeping, 0 stopped, 0 zombie Cpu(s): 7.8%us, 1.9%sy, 0.0%ni, 89.2%id, 0.0%wa, 0.1%hi, 1.0%si, 0.0%st Mem: 8175452k total, 8103988k used, 71464k free, 268716k buffers Swap: 6881272k total, 4275424k used, 2605848k free, 6338184k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 17265 tdv1 15 0 56504 828 632 S 0.0 0.0 195:53.25 redis-server
指定进程信息有多个时,需要结合其它工具将回车替换为,(-p 支持pid,pid,pid语法)
命令:top -p pgrep MULTI_PROCESS | tr “\n” ”,” | sed ‘s/,$//’
/opt/app/tdv1$top -p `pgrep java | tr "\\n" "," | sed ‘s/,$//‘` top - 14:05:31 up 53 days, 2:43, 9 users, load average: 0.29, 0.34, 0.22 Tasks: 3 total, 0 running, 3 sleeping, 0 stopped, 0 zombie Cpu(s): 5.9%us, 8.2%sy, 0.0%ni, 86.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st Mem: 66082088k total, 29512860k used, 36569228k free, 756352k buffers Swap: 32767992k total, 1019900k used, 31748092k free, 15710284k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 27855 rdtfare 20 0 4454m 1.3g 5300 S 0.7 2.0 338:31.37 java 2034 jenkins 20 0 18.3g 5.2g 5284 S 0.3 8.2 56:02.38 java 12156 rdtfare 20 0 4196m 1.2g 12m S 0.3 2.0 86:34.62 java
htop 是一个 Linux 下的交互式的进程浏览器,可以用来替换Linux下的top命令。
与Linux传统的top相比,htop更加人性化。它可让用户交互式操作,支持颜色主题,可横向或纵向滚动浏览进程列表,并支持鼠标操作。
与top相比,htop有以下优点:
free工具用来查看系统可用内存:
/opt/app/tdev1$free total used free shared buffers cached Mem: 8175320 6159248 2016072 0 310208 5243680 -/+ buffers/cache: 605360 7569960 Swap: 6881272 16196 6865076
解释一下Linux上free命令的输出。
下面是free的运行结果,一共有4行。为了方便说明,我加上了列号。这样可以把free的输出看成一个二维数组FO(Free Output)。例如:
FO[2][1] = 24677460 FO[3][2] = 10321516 1 2 3 4 5 6 1 total used free shared buffers cached 2 Mem: 24677460 23276064 1401396 0 870540 12084008 3 -/+ buffers/cache: 10321516 14355944 4 Swap: 25151484 224188 24927296
free的输出一共有四行,第四行为交换区的信息,分别是交换的总量(total),使用量(used)和有多少空闲的交换区(free),这个比较清楚,不说太多。
free输出地第二行和第三行是比较让人迷惑的。这两行都是说明内存使用情况的。第一列是总量(total),第二列是使用量(used),第三列是可用量(free)。
第一行的输出时从操作系统(OS)来看的。也就是说,从OS的角度来看,计算机上一共有:
24677460KB(缺省时free的单位为KB)物理内存,即FO[2][1]; 在这些物理内存中有23276064KB(即FO[2][2])被使用了; 还用1401396KB(即FO[2][3])是可用的;
这里得到第一个等式:
FO[2][1] = FO[2][2] + FO[2][3]
FO[2][4]表示被几个进程共享的内存的,现在已经deprecated,其值总是0(当然在一些系统上也可能不是0,主要取决于free命令是怎么实现的)。
FO[2][5]表示被OS buffer住的内存。FO[2][6]表示被OS cache的内存。在有些时候buffer和cache这两个词经常混用。不过在一些比较低层的软件里是要区分这两个词的,看老外的洋文:
A buffer is something that has yet to be "written" to disk.
A cache is something that has been "read" from the disk and stored for later use.
也就是说buffer是用于存放要输出到disk(块设备)的数据的,而cache是存放从disk上读出的数据。这二者是为了提高IO性能的,并由OS管理。
Linux和其他成熟的操作系统(例如windows),为了提高IO read的性能,总是要多cache一些数据,这也就是为什么FO[2][6](cached memory)比较大,而FO[2][3]比较小的原因。我们可以做一个简单的测试:
释放掉被系统cache占用的数据:
echo 3>/proc/sys/vm/drop_caches
第二次读应该比第一次快很多。原来我做过一个BerkeleyDB的读操作,大概要读5G的文件,几千万条记录。在我的环境上,第二次读比第一次大概可以快9倍左右。
free输出的第二行是从一个应用程序的角度看系统内存的使用情况。
因为被系统cache和buffer占用的内存可以被快速回收,所以通常FO[3][3]比FO[2][3]会大很多。
这里还用两个等式:
FO[3][2] = FO[2][2] - FO[2][5] - FO[2][6]
FO[3][3] = FO[2][3] + FO[2][5] + FO[2][6]
这二者都不难理解。
free命令由procps.*.rpm提供(在Redhat系列的OS上)。free命令的所有输出值都是从/proc/meminfo中读出的。
在系统上可能有meminfo(2)这个函数,它就是为了解析/proc/meminfo的。procps这个包自己实现了meminfo()这个函数。可以下载一个procps的tar包看看具体实现,现在最新版式3.2.8。
文章出处:
http://www.cnblogs.com/coldplayerest/archive/2010/02/20/1669949.html
vmstat是Virtual Meomory Statistics(虚拟内存统计)的缩写,可实时动态监视操作系统的虚拟内存、进程、CPU活动。
vmstat [-V] [-n] [delay [count]]
- -V表示打印出版本信息;
- -n表示在周期性循环输出时,输出的头部信息仅显示一次;
- delay是两次输出之间的延迟时间;
- count是指按照这个时间间隔统计的次数。
/root$vmstat 5 5 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 6 0 0 27900472 204216 28188356 0 0 0 9 1 2 11 14 75 0 0 9 0 0 27900380 204228 28188360 0 0 0 13 33312 126221 22 20 58 0 0 2 0 0 27900340 204240 28188364 0 0 0 10 32755 125566 22 20 58 0 0
iostat是I/O statistics(输入/输出统计)的缩写,用来动态监视系统的磁盘操作活动。
iostat[参数][时间][次数]
通过iostat方便查看CPU、网卡、tty设备、磁盘、CD-ROM 等等设备的活动情况, 负载信息。
/root$iostat Linux 2.6.32-279.el6.x86_64 (colin) 07/16/2014 _x86_64_ (4 CPU) avg-cpu: %user %nice %system %iowait %steal %idle 10.81 0.00 14.11 0.18 0.00 74.90 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 1.95 1.48 70.88 9145160 437100644 dm-0 3.08 0.55 24.34 3392770 150087080 dm-1 5.83 0.93 46.49 5714522 286724168 dm-2 0.01 0.00 0.05 23930 289288
注:如果%iowait的值过高,表示硬盘存在I/O瓶颈,%idle值高,表示CPU较空闲,如果%idle值高但系统响应慢时,有可能是CPU等待分配内存,此时应加大内存容量。%idle值如果持续低于10,那么系统的CPU处理能力相对较低,表明系统中最需要解决的资源是CPU。
备注:如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明I/O 队列太长,io响应太慢,则需要进行必要优化。如果avgqu-sz比较大,也表示有当量io在等待。
/root$iostat 2 3 Linux 2.6.32-279.el6.x86_64 (colin) 07/16/2014 _x86_64_ (4 CPU) avg-cpu: %user %nice %system %iowait %steal %idle 10.81 0.00 14.11 0.18 0.00 74.90 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 1.95 1.48 70.88 9145160 437106156 dm-0 3.08 0.55 24.34 3392770 150088376 dm-1 5.83 0.93 46.49 5714522 286728384 dm-2 0.01 0.00 0.05 23930 289288 avg-cpu: %user %nice %system %iowait %steal %idle 22.62 0.00 19.67 0.26 0.00 57.46 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 2.50 0.00 28.00 0 56 dm-0 0.00 0.00 0.00 0 0 dm-1 3.50 0.00 28.00 0 56 dm-2 0.00 0.00 0.00 0 0 avg-cpu: %user %nice %system %iowait %steal %idle 22.69 0.00 19.62 0.00 0.00 57.69 Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn sda 0.00 0.00 0.00 0 0 dm-0 0.00 0.00 0.00 0 0 dm-1 0.00 0.00 0.00 0 0 dm-2 0.00 0.00 0.00 0 0
说明:每隔 2秒刷新显示,且显示3次
/root$iostat -d -k 1 1 Linux 2.6.32-279.el6.x86_64 (colin) 07/16/2014 _x86_64_ (4 CPU) Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn sda 1.95 0.74 35.44 4572712 218559410 dm-0 3.08 0.28 12.17 1696513 75045968 dm-1 5.83 0.46 23.25 2857265 143368744 dm-2 0.01 0.00 0.02 11965 144644
这些单位都为Kilobytes。
上面的例子中,我们可以看到磁盘sda以及它的各个分区的统计数据,当时统计的磁盘总TPS是1.95,下面是各个分区的TPS。(因为是瞬间值,所以总TPS并不严格等于各个分区TPS的总和)
/root$iostat -d -x -k 1 1 Linux 2.6.32-279.el6.x86_64 (colin) 07/16/2014 _x86_64_ (4 CPU) Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util sda 0.02 7.25 0.04 1.90 0.74 35.47 37.15 0.04 19.13 5.58 1.09 dm-0 0.00 0.00 0.04 3.05 0.28 12.18 8.07 0.65 209.01 1.11 0.34 dm-1 0.00 0.00 0.02 5.82 0.46 23.26 8.13 0.43 74.33 1.30 0.76 dm-2 0.00 0.00 0.00 0.01 0.00 0.02 8.00 0.00 5.41 3.28 0.00
如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。 idle小于70% IO压力就较大了,一般读取速度有较多的wait。 同时可以结合vmstat 查看查看b参数(等待资源的进程数)和wa参数(IO等待所占用的CPU时间的百分比,高过30%时IO压力高)。
另外 await 的参数也要多和 svctm 来参考。差的过高就一定有 IO 的问题。
avgqu-sz 也是个做 IO 调优时需要注意的地方,这个就是直接每次操作的数据的大小,如果次数多,但数据拿的小的话,其实 IO 也会很小。如果数据拿的大,才IO 的数据会高。也可以通过 avgqu-sz × ( r/s or w/s ) = rsec/s or wsec/s。也就是讲,读定速度是这个来决定的。
svctm 一般要小于 await (因为同时等待的请求的等待时间被重复计算了),svctm 的大小一般和磁盘性能有关,CPU/内存的负荷也会对其有影响,请求过多也会间接导致 svctm 的增加。await 的大小一般取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式。如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明 I/O 队列太长,应用得到的响应时间变慢,如果响应时间超过了用户可以容许的范围,这时可以考虑更换更快的磁盘,调整内核 elevator 算法,优化应用,或者升级 CPU。
队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水。
设备IO操作:总IO(io)/s = r/s(读) +w/s(写)
平均等待时间=单个I/O服务器时间*(1+2+...+请求总数-1)/请求总数
每秒发出的I/0请求很多,但是平均队列就4,表示这些请求比较均匀,大部分处理还是比较及时。
sar是System Activity Reporter(系统活动情况报告)的缩写。sar工具将对系统当前的状态进行取样,然后通过计算数据和比例来表达系统的当前运行状态。它的特点是可以连续对系统取样,获得大量的取样数据;取样数据和分析的结果都可以存入文件,所需的负载很小。sar是目前Linux上最为全面的系统性能分析工具之一,可以从14个大方面对系统的活动进行报告,包括文件的读写情况、系统调用的使用情况、串口、CPU效率、内存使用状况、进程活动及IPC有关的活动等,使用也是较为复杂。
sar是查看操作系统报告指标的各种工具中,最为普遍和方便的;它有两种用法;
默认情况下,sar从最近的0点0分开始显示数据;如果想继续查看一天前的报告;可以查看保存在/var/log/sysstat/下的sa日志; 使用sar工具查看:
$sar -f /var/log/sysstat/sa28 \| head sar -r -f
/var/log/sysstat/sa28
sar -u : 默认情况下显示的cpu使用率等信息就是sar -u;
可以看到这台机器使用了虚拟化技术,有相应的时间消耗; 各列的指标分别是:
sar -q: 查看平均负载
指定-q后,就能查看运行队列中的进程数、系统上的进程大小、平均负载等;与其它命令相比,它能查看各项指标随时间变化的情况;
sar -r: 指定-r之后,可查看物理内存使用状况;
sar -W:查看页面交换发生状况
页面发生交换时,服务器的吞吐量会大幅下降;服务器状况不良时,如果怀疑因为内存不足而导致了页面交换的发生,可以使用这个命令来确认是否发生了大量的交换;
要判断系统瓶颈问题,有时需几个 sar 命令选项结合起来;
设置 ENABLED=”true”
这个工具和objdump命令提供的功能类似,但是它显示的信息更为具体,并且它不依赖BFD库(BFD库是一个GNU项目,它的目标就是希望通过一种统一的接口来处理不同的目标文件);
ELF文件有三种类型:
-a –all 全部 Equivalent to: -h -l -S -s -r -d -V -A -I
-h –file-header 文件头 Display the ELF file header
-l –program-headers 程序 Display the program headers
–segments An alias for –program-headers
-S –section-headers 段头 Display the sections’ header
--sections An alias for –section-headers
-e –headers 全部头 Equivalent to: -h -l -S
-s –syms 符号表 Display the symbol table
--symbols An alias for –syms
-n –notes 内核注释 Display the core notes (if present)
-r –relocs 重定位 Display the relocations (if present)
-u –unwind Display the unwind info (if present)
-d –dynamic 动态段 Display the dynamic segment (if present)
-V –version-info 版本 Display the version sections (if present)
-A –arch-specific CPU构架 Display architecture specific information (if any).
-D –use-dynamic 动态段 Use the dynamic section info when displaying symbols
-x –hex-dump=<number> 显示 段内内容Dump the contents of section <number>
-w[liaprmfFso] or
-I –histogram Display histogram of bucket list lengths
-W –wide 宽行输出 Allow output width to exceed 80 characters
-H –help Display this information
-v –version Display the version number of readelf
想知道一个应用程序的可运行的架构平台:
$readelf -h main| grep Machine
-h选项将显示文件头的概要信息,从里面可以看到,有很多有用的信息:
$readelf -h main ELF Header: Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 Class: ELF64 Data: 2 s complement, little endian Version: 1 (current) OS/ABI: UNIX - System V ABI Version: 0 Type: EXEC (Executable file) Machine: Advanced Micro Devices X86-64 Version: 0x1 Entry point address: 0x400790 Start of program headers: 64 (bytes into file) Start of section headers: 5224 (bytes into file) Flags: 0x0 Size of this header: 64 (bytes) Size of program headers: 56 (bytes) Number of program headers: 8 Size of section headers: 64 (bytes) Number of section headers: 29 Section header string table index: 26
一个编译好的应用程序,想知道其编译时是否使用了-g选项(加入调试信息):
$readelf -S main| grep debug
用-S选项是显示所有段信息;如果编译时使用了-g选项,则会有debug段;
查看.o文件是否编入了调试信息(编译的时候是否加了-g):
$readelf -S Shpos.o | grep debug
readelf输出的完整内容:
$readelf -all a.out ELF Header: Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 Class: ELF32 Data: 2‘s complement, little endian Version: 1 (current) OS/ABI: UNIX - System V ABI Version: 0 Type: EXEC (Executable file) Machine: Intel 80386 Version: 0x1 Entry point address: 0x8048330 Start of program headers: 52 (bytes into file) Start of section headers: 4412 (bytes into file) Flags: 0x0 Size of this header: 52 (bytes) Size of program headers: 32 (bytes) Number of program headers: 9 Size of section headers: 40 (bytes) Number of section headers: 30 Section header string table index: 27 Section Headers: [Nr] Name Type Addr Off Size ES Flg Lk Inf Al [ 0] NULL 00000000 000000 000000 00 0 0 0 [ 1] .interp PROGBITS 08048154 000154 000013 00 A 0 0 1 [ 2] .note.ABI-tag NOTE 08048168 000168 000020 00 A 0 0 4 [ 3] .note.gnu.build-i NOTE 08048188 000188 000024 00 A 0 0 4 [ 4] .gnu.hash GNU_HASH 080481ac 0001ac 000020 04 A 5 0 4 [ 5] .dynsym DYNSYM 080481cc 0001cc 000050 10 A 6 1 4 [ 6] .dynstr STRTAB 0804821c 00021c 00004c 00 A 0 0 1 [ 7] .gnu.version VERSYM 08048268 000268 00000a 02 A 5 0 2 [ 8] .gnu.version_r VERNEED 08048274 000274 000020 00 A 6 1 4 [ 9] .rel.dyn REL 08048294 000294 000008 08 A 5 0 4 [10] .rel.plt REL 0804829c 00029c 000018 08 A 5 12 4 [11] .init PROGBITS 080482b4 0002b4 00002e 00 AX 0 0 4 [12] .plt PROGBITS 080482f0 0002f0 000040 04 AX 0 0 16 [13] .text PROGBITS 08048330 000330 00018c 00 AX 0 0 16 [14] .fini PROGBITS 080484bc 0004bc 00001a 00 AX 0 0 4 [15] .rodata PROGBITS 080484d8 0004d8 000011 00 A 0 0 4 [16] .eh_frame_hdr PROGBITS 080484ec 0004ec 000034 00 A 0 0 4 [17] .eh_frame PROGBITS 08048520 000520 0000c4 00 A 0 0 4 [18] .ctors PROGBITS 08049f14 000f14 000008 00 WA 0 0 4 [19] .dtors PROGBITS 08049f1c 000f1c 000008 00 WA 0 0 4 [20] .jcr PROGBITS 08049f24 000f24 000004 00 WA 0 0 4 [21] .dynamic DYNAMIC 08049f28 000f28 0000c8 08 WA 6 0 4 [22] .got PROGBITS 08049ff0 000ff0 000004 04 WA 0 0 4 [23] .got.plt PROGBITS 08049ff4 000ff4 000018 04 WA 0 0 4 [24] .data PROGBITS 0804a00c 00100c 000008 00 WA 0 0 4 [25] .bss NOBITS 0804a014 001014 000008 00 WA 0 0 4 [26] .comment PROGBITS 00000000 001014 00002a 01 MS 0 0 1 [27] .shstrtab STRTAB 00000000 00103e 0000fc 00 0 0 1 [28] .symtab SYMTAB 00000000 0015ec 000410 10 29 45 4 [29] .strtab STRTAB 00000000 0019fc 0001f9 00 0 0 1 Key to Flags: W (write), A (alloc), X (execute), M (merge), S (strings) I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown) O (extra OS processing required) o (OS specific), p (processor specific) There are no section groups in this file. Program Headers: Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align PHDR 0x000034 0x08048034 0x08048034 0x00120 0x00120 R E 0x4 INTERP 0x000154 0x08048154 0x08048154 0x00013 0x00013 R 0x1 [Requesting program interpreter: /lib/ld-linux.so.2] LOAD 0x000000 0x08048000 0x08048000 0x005e4 0x005e4 R E 0x1000 LOAD 0x000f14 0x08049f14 0x08049f14 0x00100 0x00108 RW 0x1000 DYNAMIC 0x000f28 0x08049f28 0x08049f28 0x000c8 0x000c8 RW 0x4 NOTE 0x000168 0x08048168 0x08048168 0x00044 0x00044 R 0x4 GNU_EH_FRAME 0x0004ec 0x080484ec 0x080484ec 0x00034 0x00034 R 0x4 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x4 GNU_RELRO 0x000f14 0x08049f14 0x08049f14 0x000ec 0x000ec R 0x1 Section to Segment mapping: Segment Sections... 00 01 .interp 02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rel.dyn .rel.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame 03 .ctors .dtors .jcr .dynamic .got .got.plt .data .bss 04 .dynamic 05 .note.ABI-tag .note.gnu.build-id 06 .eh_frame_hdr 07 08 .ctors .dtors .jcr .dynamic .got Dynamic section at offset 0xf28 contains 20 entries: Tag Type Name/Value 0x00000001 (NEEDED) Shared library: [libc.so.6] 0x0000000c (INIT) 0x80482b4 0x0000000d (FINI) 0x80484bc 0x6ffffef5 (GNU_HASH) 0x80481ac 0x00000005 (STRTAB) 0x804821c 0x00000006 (SYMTAB) 0x80481cc 0x0000000a (STRSZ) 76 (bytes) 0x0000000b (SYMENT) 16 (bytes) 0x00000015 (DEBUG) 0x0 0x00000003 (PLTGOT) 0x8049ff4 0x00000002 (PLTRELSZ) 24 (bytes) 0x00000014 (PLTREL) REL 0x00000017 (JMPREL) 0x804829c 0x00000011 (REL) 0x8048294 0x00000012 (RELSZ) 8 (bytes) 0x00000013 (RELENT) 8 (bytes) 0x6ffffffe (VERNEED) 0x8048274 0x6fffffff (VERNEEDNUM) 1 0x6ffffff0 (VERSYM) 0x8048268 0x00000000 (NULL) 0x0 Relocation section ‘.rel.dyn‘ at offset 0x294 contains 1 entries: Offset Info Type Sym.Value Sym. Name 08049ff0 00000206 R_386_GLOB_DAT 00000000 __gmon_start__ Relocation section ‘.rel.plt‘ at offset 0x29c contains 3 entries: Offset Info Type Sym.Value Sym. Name 0804a000 00000107 R_386_JUMP_SLOT 00000000 printf 0804a004 00000207 R_386_JUMP_SLOT 00000000 __gmon_start__ 0804a008 00000307 R_386_JUMP_SLOT 00000000 __libc_start_main There are no unwind sections in this file. Symbol table ‘.dynsym‘ contains 5 entries: Num: Value Size Type Bind Vis Ndx Name 0: 00000000 0 NOTYPE LOCAL DEFAULT UND 1: 00000000 0 FUNC GLOBAL DEFAULT UND printf@GLIBC_2.0 (2) 2: 00000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__ 3: 00000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.0 (2) 4: 080484dc 4 OBJECT GLOBAL DEFAULT 15 _IO_stdin_used Symbol table ‘.symtab‘ contains 65 entries: Num: Value Size Type Bind Vis Ndx Name 0: 00000000 0 NOTYPE LOCAL DEFAULT UND 1: 08048154 0 SECTION LOCAL DEFAULT 1 2: 08048168 0 SECTION LOCAL DEFAULT 2 3: 08048188 0 SECTION LOCAL DEFAULT 3 4: 080481ac 0 SECTION LOCAL DEFAULT 4 5: 080481cc 0 SECTION LOCAL DEFAULT 5 6: 0804821c 0 SECTION LOCAL DEFAULT 6 7: 08048268 0 SECTION LOCAL DEFAULT 7 8: 08048274 0 SECTION LOCAL DEFAULT 8 9: 08048294 0 SECTION LOCAL DEFAULT 9 10: 0804829c 0 SECTION LOCAL DEFAULT 10 11: 080482b4 0 SECTION LOCAL DEFAULT 11 12: 080482f0 0 SECTION LOCAL DEFAULT 12 13: 08048330 0 SECTION LOCAL DEFAULT 13 14: 080484bc 0 SECTION LOCAL DEFAULT 14 15: 080484d8 0 SECTION LOCAL DEFAULT 15 16: 080484ec 0 SECTION LOCAL DEFAULT 16 17: 08048520 0 SECTION LOCAL DEFAULT 17 18: 08049f14 0 SECTION LOCAL DEFAULT 18 19: 08049f1c 0 SECTION LOCAL DEFAULT 19 20: 08049f24 0 SECTION LOCAL DEFAULT 20 21: 08049f28 0 SECTION LOCAL DEFAULT 21 22: 08049ff0 0 SECTION LOCAL DEFAULT 22 23: 08049ff4 0 SECTION LOCAL DEFAULT 23 24: 0804a00c 0 SECTION LOCAL DEFAULT 24 25: 0804a014 0 SECTION LOCAL DEFAULT 25 26: 00000000 0 SECTION LOCAL DEFAULT 26 27: 00000000 0 FILE LOCAL DEFAULT ABS crtstuff.c 28: 08049f14 0 OBJECT LOCAL DEFAULT 18 __CTOR_LIST__ 29: 08049f1c 0 OBJECT LOCAL DEFAULT 19 __DTOR_LIST__ 30: 08049f24 0 OBJECT LOCAL DEFAULT 20 __JCR_LIST__ 31: 08048360 0 FUNC LOCAL DEFAULT 13 __do_global_dtors_aux 32: 0804a014 1 OBJECT LOCAL DEFAULT 25 completed.6086 33: 0804a018 4 OBJECT LOCAL DEFAULT 25 dtor_idx.6088 34: 080483c0 0 FUNC LOCAL DEFAULT 13 frame_dummy 35: 00000000 0 FILE LOCAL DEFAULT ABS crtstuff.c 36: 08049f18 0 OBJECT LOCAL DEFAULT 18 __CTOR_END__ 37: 080485e0 0 OBJECT LOCAL DEFAULT 17 __FRAME_END__ 38: 08049f24 0 OBJECT LOCAL DEFAULT 20 __JCR_END__ 39: 08048490 0 FUNC LOCAL DEFAULT 13 __do_global_ctors_aux 40: 00000000 0 FILE LOCAL DEFAULT ABS a.c 41: 08049f14 0 NOTYPE LOCAL DEFAULT 18 __init_array_end 42: 08049f28 0 OBJECT LOCAL DEFAULT 21 _DYNAMIC 43: 08049f14 0 NOTYPE LOCAL DEFAULT 18 __init_array_start 44: 08049ff4 0 OBJECT LOCAL DEFAULT 23 _GLOBAL_OFFSET_TABLE_ 45: 08048480 2 FUNC GLOBAL DEFAULT 13 __libc_csu_fini 46: 08048482 0 FUNC GLOBAL HIDDEN 13 __i686.get_pc_thunk.bx 47: 0804a00c 0 NOTYPE WEAK DEFAULT 24 data_start 48: 00000000 0 FUNC GLOBAL DEFAULT UND printf@@GLIBC_2.0 49: 0804a014 0 NOTYPE GLOBAL DEFAULT ABS _edata 50: 080484bc 0 FUNC GLOBAL DEFAULT 14 _fini 51: 08049f20 0 OBJECT GLOBAL HIDDEN 19 __DTOR_END__ 52: 0804a00c 0 NOTYPE GLOBAL DEFAULT 24 __data_start 53: 00000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__ 54: 0804a010 0 OBJECT GLOBAL HIDDEN 24 __dso_handle 55: 080484dc 4 OBJECT GLOBAL DEFAULT 15 _IO_stdin_used 56: 00000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@@GLIBC_ 57: 08048410 97 FUNC GLOBAL DEFAULT 13 __libc_csu_init 58: 0804a01c 0 NOTYPE GLOBAL DEFAULT ABS _end 59: 08048330 0 FUNC GLOBAL DEFAULT 13 _start 60: 080484d8 4 OBJECT GLOBAL DEFAULT 15 _fp_hw 61: 0804a014 0 NOTYPE GLOBAL DEFAULT ABS __bss_start 62: 080483e4 40 FUNC GLOBAL DEFAULT 13 main 63: 00000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses 64: 080482b4 0 FUNC GLOBAL DEFAULT 11 _init Histogram for `.gnu.hash‘ bucket list length (total of 2 buckets): Length Number % of total Coverage 0 1 ( 50.0%) 1 1 ( 50.0%) 100.0% Version symbols section ‘.gnu.version‘ contains 5 entries: Addr: 0000000008048268 Offset: 0x000268 Link: 5 (.dynsym) 000: 0 (*local*) 2 (GLIBC_2.0) 0 (*local*) 2 (GLIBC_2.0) 004: 1 (*global*) Version needs section ‘.gnu.version_r‘ contains 1 entries: Addr: 0x0000000008048274 Offset: 0x000274 Link: 6 (.dynstr) 000000: Version: 1 File: libc.so.6 Cnt: 1 0x0010: Name: GLIBC_2.0 Flags: none Version: 2 Notes at offset 0x00000168 with length 0x00000020: Owner Data size Description GNU 0x00000010 NT_GNU_ABI_TAG (ABI version tag) OS: Linux, ABI: 2.6.15 Notes at offset 0x00000188 with length 0x00000024: Owner Data size Description GNU 0x00000014 NT_GNU_BUILD_ID (unique build ID bitstring) Build ID: 17fb9651029b6a8543bfafec9eea23bd16454e65
关于ELF文件格式的参考:http://www.cnblogs.com/xmphoenix/archive/2011/10/23/2221879.html
objdump工具用来显示二进制文件的信息,就是以一种可阅读的格式让你更多地了解二进制文件可能带有的附加信息。
查看本机目标结构(使用大端还是小端存储):
$objdump -i
反汇编程序:
$objdump -d main.o
显示符号表入口:
$objdump -t main.o
希望显示可用的简洁帮助信息,直接输入objdump即可;(objdump -H)
nm 命令显示关于指定 File 中符号的信息,文件可以是对象文件、可执行文件或对象文件库。如果文件没有包含符号信息,nm 命令报告该情况,但不把它解释为出错条件。 nm 命令缺省情况下报告十进制符号表示法下的数字值。
$nm myProgrammer 08049f28 d _DYNAMIC 08049ff4 d _GLOBAL_OFFSET_TABLE_ 080484dc R _IO_stdin_used w _Jv_RegisterClasses 08049f18 d __CTOR_END__ 08049f14 d __CTOR_LIST__ 08049f20 D __DTOR_END__ 08049f1c d __DTOR_LIST__ 080485e0 r __FRAME_END__ 08049f24 d __JCR_END__ 08049f24 d __JCR_LIST__ 0804a014 A __bss_start 0804a00c D __data_start 08048490 t __do_global_ctors_aux 08048360 t __do_global_dtors_aux 0804a010 D __dso_handle w __gmon_start__ 08048482 T __i686.get_pc_thunk.bx 08049f14 d __init_array_end 08049f14 d __init_array_start 08048480 T __libc_csu_fini 08048410 T __libc_csu_init U __libc_start_main@@GLIBC_2.0 0804a014 A _edata 0804a01c A _end 080484bc T _fini 080484d8 R _fp_hw 080482b4 T _init 08048330 T _start 0804a014 b completed.6086 0804a00c W data_start 0804a018 b dtor_idx.6088 080483c0 t frame_dummy 080483e4 T main U printf@@GLIBC_2.0
这些包含可执行代码的段称为正文段。同样地,数据段包含了不可执行的信息或数据。另一种类型的段,称为 BSS 段,它包含以符号数据开头的块。对于 nm 命令列出的每个符号,它们的值使用十六进制来表示(缺省行为),并且在该符号前面加上了一个表示符号类型的编码字符。
可以将目标文件中所包含的不同的部分划分为段。段可以包含可执行代码、符号名称、初始数据值和许多其他类型的数据。有关这些类型的数据的详细信息,可以阅读 UNIX 中 nm 的 man 页面,其中按照该命令输出中的字符编码分别对每种类型进行了描述。
对于每一个符号来说,其类型如果是小写的,则表明该符号是local的;大写则表明该符号是global(external)的。
库或对象名 如果您指定了 -A 选项,则 nm 命令只报告与该文件有关的或者库或者对象名。
有时会碰到一个编译了但没有链接的代码,那是因为它缺失了标识符;这种情况,可以用nm和objdump、readelf命令来查看程序的符号表;所有这些命令做的工作基本一样;
比如连接器报错有未定义的标识符;大多数情况下,会发生在库的缺失或企图链接一个错误版本的库的时候;浏览目标代码来寻找一个特殊标识符的引用:
nm -uCA *.o | grep foo
-u选项限制了每个目标文件中未定义标识符的输出。-A选项用于显示每个标识符的文件名信息;对于C++代码,常用的还有-C选项,它也为解码这些标识符;
注解
objdump、readld命令可以完成同样的任务。等效命令为: $objdump -t $readelf -s
列出 a.out 对象文件的静态和外部符:
$nm -e a.out
以十六进制显示符号大小和值并且按值排序符号:
$nm -xv a.out
显示 libc.a 中所有 64 位对象符号,忽略所有 32 位对象:
$nm -X64 /usr/lib/libc.a
作用:查看程序被映射到内存中的映像所占用的大小信息。
程序映射到内存中,从低地址到高地址依次为下列段:
另外, 在高地址还储存了命令行参数及环境变量.
因为内存程序映像中的各段可能位于不同的地址空间中, 它们不一定位于连续的内存块中. 操作系统将程序映像映射到地址空间时, 通常将内存程序映像划分为大小相同的块(也就是page, 页). 只有该页被引用时, 它才被加载到内存中. 不过对于程序员来说, 可以视内存程序映像在逻辑上是连续的.
/opt/app/todeav1/colin/tests#size main text data bss dec hex filename 1259 540 16 1815 717 main
关于程序内存映像,这篇文章讲的很好:http://blog.chinaunix.net/uid-9012903-id-2011435.html
Linux系统中的wget是一个下载文件的工具,它用在命令行下。对于Linux用户是必不可少的工具,我们经常要下载一些软件或从远程服务器恢复备份到本地服务器。wget支持HTTP,HTTPS和FTP协议,可以使用HTTP代理。
wget 可以跟踪HTML页面上的链接依次下载来创建远程服务器的本地版本,完全重建原始站点的目录结构。这又常被称作”递归下载”。在递归下载的时候,wget 遵循Robot Exclusion标准(/robots.txt). wget可以在下载的同时,将链接转换成指向本地文件,以方便离线浏览。
wget 非常稳定,它在带宽很窄的情况下和不稳定网络中有很强的适应性.如果是由于网络的原因下载失败,wget会不断的尝试,直到整个文件下载完毕。如果是服务器打断下载过程,它会再次联到服务器上从停止的地方继续下载。这对从那些限定了链接时间的服务器上下载大文件非常有用。
wget [参数] [URL地址]
–sslcertfile=FILE 可选客户端证书 –sslcertkey=KEYFILE 可选客户端证书的KEYFILE –egd-file=FILE 指定EGD socket的文件名
wget -S –spider url 不下载只显示过程
$wget http://www.minjieren.com/wordpress-3.1-zh_CN.zip
说明:以上例子从网络下载一个文件并保存在当前目录,在下载的过程中会显示进度条,包含(下载完成百分比,已经下载的字节,当前下载速度,剩余下载时间)。
$wget -O wordpress.zip http://www.minjieren.com/download.aspx?id=1080
wget默认会以最后一个符合”/”的后面的字符来命令,对于动态链接的下载通常文件名会不正确。
$wget --limit-rate=300k http://www.minjieren.com/wordpress-3.1-zh_CN.zip
当你执行wget的时候,它默认会占用全部可能的宽带下载。但是当你准备下载一个大文件,而你还需要下载其它文件时就有必要限速了。
$wget -c http://www.minjieren.com/wordpress-3.1-zh_CN.zip
使用wget -c重新启动下载中断的文件,对于我们下载大文件时突然由于网络等原因中断非常有帮助,我们可以继续接着下载而不是重新下载一个文件。需要继续中断的下载时可以使用-c参数。
$wget -b http://www.minjieren.com/wordpress-3.1-zh_CN.zip Continuing in background, pid 1840. Output will be written to ‘wget-log‘.
对于下载非常大的文件的时候,我们可以使用参数-b进行后台下载。
你可以使用以下命令来察看下载进度:
$tail -f wget-log
wget --user-agent="Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.204 Safari/534.16" http://www.minjieren.com/wordpress-3.1-zh_CN.zip
有些网站能通过根据判断代理名称不是浏览器而拒绝你的下载请求。不过你可以通过–user-agent参数伪装。
首先,保存一份下载链接文件,接着使用这个文件和参数-i下载:
$cat > filelist.txt
url1
url2
url3
url4
$wget -i filelist.txt
$wget --mirror -p --convert-links -P ./LOCAL URL
$wget -r -A.pdf url
$wget ftp-url
$wget --ftp-user=USERNAME --ftp-password=PASSWORD url
使用如下命令编译安装:
tar zxvf wget-1.9.1.tar.gz cd wget-1.9.1 ./configure make make install
scp是secure copy的简写,用于在Linux下进行远程拷贝文件的命令,和它类似的命令有cp,不过cp只是在本机进行拷贝不能跨服务器,而且scp传输是加密的。当你服务器硬盘变为只读 read only system时,用scp可以帮你把文件移出来。
注解
类似的工具有rsync;scp消耗资源少,不会提高多少系统负荷,在这一点上,rsync就远远不及它了。rsync比scp会快一点,但当小文件多的情况下,rsync会导致硬盘I/O非常高,而scp基本不影响系统正常使用。
scp [参数] [原路径] [目标路径]
复制文件:
$scp local_file remote_username@remote_ip:remote_folder
$scp local_file remote_username@remote_ip:remote_file
$scp local_file remote_ip:remote_folder
$scp local_file remote_ip:remote_file
指定了用户名,命令执行后需要输入用户密码;如果不指定用户名,命令执行后需要输入用户名和密码;
复制目录:
$scp -r local_folder remote_username@remote_ip:remote_folder
$scp -r local_folder remote_ip:remote_folder
第1个指定了用户名,命令执行后需要输入用户密码; 第2个没有指定用户名,命令执行后需要输入用户名和密码;
注解
从远程复制到本地的scp命令与上面的命令一样,只要将从本地复制到远程的命令后面2个参数互换顺序就行了。
$scp root@10.6.159.147:/opt/soft/demo.tar /opt/soft/
说明: 从10.6.159.147机器上的/opt/soft/的目录中下载demo.tar 文件到本地/opt/soft/目录中
$scp -r root@10.6.159.147:/opt/soft/test /opt/soft/
说明: 从10.6.159.147机器上的/opt/soft/中下载test目录到本地的/opt/soft/目录来。
$scp /opt/soft/demo.tar root@10.6.159.147:/opt/soft/scptest
说明: 复制本地opt/soft/目录下的文件demo.tar 到远程机器10.6.159.147的opt/soft/scptest目录
$scp -r /opt/soft/test root@10.6.159.147:/opt/soft/scptest
说明: 上传本地目录 /opt/soft/test到远程机器10.6.159.147上/opt/soft/scptest的目录中
通过crontab 命令,我们可以在固定的间隔时间执行指定的系统指令或 shell script脚本。时间间隔的单位可以是分钟、小时、日、月、周及以上的任意组合。这个命令非常适合周期性的日志分析或数据备份等工作。
crontab [-u user] file crontab [-u user] [ -e | -l | -r ]
分 时 日 月 星期 要运行的命令
向cron进程提交一个crontab文件之前,首先要设置环境变量EDITOR。cron进程根据它来确定使用哪个编辑器编辑crontab文件。9 9 %的UNIX和LINUX用户都使用vi,如果你也是这样,那么你就编辑$HOME目录下的. profile文件,在其中加入这样一行:
EDITOR=vi; export EDITOR
然后保存并退出。不妨创建一个名为<user> cron的文件,其中<user>是用户名,例如, davecron。在该文件中加入如下的内容。
# (put your own initials here)echo the date to the console every # 15minutes between 6pm and 6am 0,15,30,45 18-06 * * * /bin/echo ‘date‘ > /dev/console
保存并退出。注意前面5个域用空格分隔。
在上面的例子中,系统将每隔1 5分钟向控制台输出一次当前时间。如果系统崩溃或挂起,从最后所显示的时间就可以一眼看出系统是什么时间停止工作的。在有些系统中,用tty1来表示控制台,可以根据实际情况对上面的例子进行相应的修改。为了提交你刚刚创建的crontab文件,可以把这个新创建的文件作为cron命令的参数:
$ crontab davecron
现在该文件已经提交给cron进程,它将每隔1 5分钟运行一次。同时,新创建文件的一个副本已经被放在/var/spool/cron目录中,文件名就是用户名(即dave)。
使用-l参数列出crontab文件:
$ crontab -l 0,15,30,45 18-06 * * * /bin/echo `date` > dev/tty1
可以使用这种方法在$HOME目录中对crontab文件做一备份:
$ crontab -l > $HOME/mycron
这样,一旦不小心误删了crontab文件,可以用上一节所讲述的方法迅速恢复。
如果希望添加、删除或编辑crontab文件中的条目,而EDITOR环境变量又设置为vi,那么就可以用vi来编辑crontab文件:
$ crontab -e
可以像使用vi编辑其他任何文件那样修改crontab文件并退出。如果修改了某些条目或添加了新的条目,那么在保存该文件时, cron会对其进行必要的完整性检查。如果其中的某个域出现了超出允许范围的值,它会提示你。 我们在编辑crontab文件时,没准会加入新的条目。例如,加入下面的一条:
# DT:delete core files,at 3.30am on 1,7,14,21,26,26 days of each month 30 3 1,7,14,21,26 * * /bin/find -name ‘core‘ -exec rm {} \;
保存并退出。
注解
最好在crontab文件的每一个条目之上加入一条注释,这样就可以知道它的功能、运行时间,更为重要的是,知道这是哪位用户的定时作业。
$crontab -r
* * * * * myCommand
3,15 * * * * myCommand
3,15 8-11 * * * myCommand
3,15 8-11 */2 * * myCommand
3,15 8-11 * * 1 myCommand
30 21 * * * /etc/init.d/smb restart
45 4 1,10,22 * * /etc/init.d/smb restart
10 1 * * 6,0 /etc/init.d/smb restart
0,30 18-23 * * * /etc/init.d/smb restart
0 23 * * 6 /etc/init.d/smb restart
* */1 * * * /etc/init.d/smb restart
0 23-7 * * * /etc/init.d/smb restart
有时我们创建了一个crontab,但是这个任务却无法自动执行,而手动执行这个任务却没有问题,这种情况一般是由于在crontab文件中没有配置环境变量引起的。
在crontab文件中定义多个调度任务时,需要特别注环境变量的设置,因为我们手动执行某个任务时,是在当前shell环境下进行的,程序当然能找到环境变量,而系统自动执行任务调度时,是不会加载任何环境变量的,因此,就需要在crontab文件中指定任务运行所需的所有环境变量,这样,系统执行任务调度时就没有问题了。
不要假定cron知道所需要的特殊环境,它其实并不知道。所以你要保证在shelll脚本中提供所有必要的路径和环境变量,除了一些自动设置的全局变量。所以注意如下3点:
脚本中涉及文件路径时写全局路径;
脚本执行要用到java或其他环境变量时,通过source命令引入环境变量,如:
cat start_cbp.sh !/bin/sh source /etc/profile export RUN_CONF=/home/d139/conf/platform/cbp/cbp_jboss.conf /usr/local/jboss-4.0.5/bin/run.sh -c mev &
当手动执行脚本OK,但是crontab死活不执行时,很可能是环境变量惹的祸,可尝试在crontab中直接引入环境变量解决问题。如:
0 * * * * . /etc/profile;/bin/sh /var/www/java/audit_no_count/bin/restart_audit.sh
每条任务调度执行完毕,系统都会将任务输出信息通过电子邮件的形式发送给当前系统用户,这样日积月累,日志信息会非常大,可能会影响系统的正常运行,因此,将每条任务进行重定向处理非常重要。 例如,可以在crontab文件中设置如下形式,忽略日志输出:
0 */3 * * * /usr/local/apache2/apachectl restart >/dev/null 2>&1
“/dev/null 2>&1”表示先将标准输出重定向到/dev/null,然后将标准错误重定向到标准输出,由于标准输出已经重定向到了/dev/null,因此标准错误也会重定向到/dev/null,这样日志输出问题就解决了。
系统级任务调度主要完成系统的一些维护操作,用户级任务调度主要完成用户自定义的一些任务,可以将用户级任务调度放到系统级任务调度来完成(不建议这么做),但是反过来却不行,root用户的任务调度操作可以通过”crontab –uroot –e”来设置,也可以将调度任务直接写入/etc/crontab文件,需要注意的是,如果要定义一个定时重启系统的任务,就必须将任务放到/etc/crontab文件,即使在root用户下创建一个定时重启系统的任务也是无效的。
新创建的cron job,不会马上执行,至少要过2分钟才执行。如果重启cron则马上执行。
当crontab失效时,可以尝试/etc/init.d/crond restart解决问题。或者查看日志看某个job有没有执行/报错tail -f /var/log/cron。
千万别乱运行crontab -r。它从Crontab目录(/var/spool/cron)中删除用户的Crontab文件。删除了该用户的所有crontab都没了。
在crontab中%是有特殊含义的,表示换行的意思。如果要用的话必须进行转义%,如经常用的date ‘+%Y%m%d’在crontab里是不会执行的,应该换成date ‘+%Y%m%d’。
更新系统时间时区后需要重启cron,在ubuntu中服务名为cron:
$service cron restart
ubuntu下启动、停止与重启cron:
$sudo /etc/init.d/cron start $sudo /etc/init.d/cron stop $sudo /etc/init.d/cron restart
标签:txt 结合 原理 会话 参数调用 glibc cipher rup down
原文地址:http://www.cnblogs.com/sz-leez/p/6690861.html