标签:his dup empty out visit str size i++ 返回
import java.util.Arrays; import java.util.Stack; // 链式存储的二叉树 public class BSTree { private TreeNode root = null; public TreeNode getRoot() { return root; } public BSTree(TreeNode root) { this.root = root; } public boolean isEmpty() { return root == null; } // 树的高度 public int height() { return TreeNode.height(root); } // 节点个数 public int size() { return TreeNode.size(root); } // 返回树中某节点的父节点 public TreeNode parent(TreeNode element) { return (root == null || root == element) ? null : TreeNode.getParent(root, element); } // 定义树的节点 private static class TreeNode { private int data; private TreeNode leftChild = null; private TreeNode rightChild = null; public TreeNode(int data) { this.data = data; this.leftChild = null; this.rightChild = null; } public static TreeNode getParent(TreeNode subTree, TreeNode element) { if (subTree == null) return null; if (subTree.leftChild == element || subTree.rightChild == element) return subTree; TreeNode p = null; // 递归左右子树 if ((p = getParent(subTree.leftChild, element)) != null) return p; else return getParent(subTree.rightChild, element); } public static TreeNode getLeftChildNode(TreeNode element) { return (element != null) ? element.leftChild : null; } public static TreeNode getRightChildNode(TreeNode element) { return (element != null) ? element.rightChild : null; } public static int height(TreeNode subTree) { if (subTree == null) return 0;// 递归结束:空树高度为0 else { int i = height(subTree.leftChild); int j = height(subTree.rightChild); return (i < j) ? (j + 1) : (i + 1); } } public static int size(TreeNode subTree) { if (subTree == null) { return 0; } else { return 1 + size(subTree.leftChild) + size(subTree.rightChild); } } // 在释放某个结点前, 该结点的左右子树应该已经释放, 所以应该采用后续遍历 public static void destroySubTree(TreeNode subTree) { // 删除根为subTree的子树 if (subTree != null) { destroySubTree(subTree.leftChild); destroySubTree(subTree.rightChild); // 删除根结点 subTree = null; } } public static void visted(TreeNode subTree) { System.out.println("data: " + subTree.data); } // 前序遍历 public static void preOrder(TreeNode subTree) { if (subTree != null) { visted(subTree); preOrder(subTree.leftChild); preOrder(subTree.rightChild); } } // 中序遍历 public static void inOrder(TreeNode subTree) { if (subTree != null) { inOrder(subTree.leftChild); visted(subTree); inOrder(subTree.rightChild); } } // 后续遍历 public static void postOrder(TreeNode subTree) { if (subTree != null) { postOrder(subTree.leftChild); postOrder(subTree.rightChild); visted(subTree); } } // 前序遍历的非递归实现 public static void nonRecPreOrder(TreeNode subTree) { Stack<TreeNode> stack = new Stack<TreeNode>(); TreeNode node = subTree; while (node != null || stack.size() > 0) { if (node != null) { visted(node); stack.push(node); node = node.leftChild; } else { node = stack.pop(); node = node.rightChild; } } } // 中序遍历的非递归实现 public static void nonRecInOrder(TreeNode subTree) { Stack<TreeNode> stack = new Stack<TreeNode>(); TreeNode node = subTree; while (node != null || stack.size() > 0) { // 存在左子树 if (node != null) { stack.push(node); node = node.leftChild; } else { node = stack.pop(); visted(node); node = node.rightChild; } } } // 后序遍历的非递归实现 public static void nonRecPostOrder(TreeNode subTree) { if (null == subTree) { //为确保下面循环至少执行一次 return; } Stack<TreeNode> stack = new Stack<TreeNode>(); TreeNode node = subTree; TreeNode lastVisited = subTree; while (true) { // 左路入栈 while (node.leftChild != null) { stack.push(node); //第一次压栈, 为了访问左路后退出 node = node.leftChild; } // 连续处理从右路返回的节点 while (node.rightChild == null || node.rightChild == lastVisited) { // 访问并纪录本次访问节点 visted(node); lastVisited = node; if (stack.empty()) { return; } node = stack.pop(); } // 处理从左路返回的节点 stack.push(node); // 第二次压栈, 为了访问右路后退出 node = node.rightChild; } } } // 二叉搜索树 public void add(int data) { add(root, data); } public boolean contains(int data) { return contains(root, data); } public int minValue() { return findMin(root).data; } public int maxValue() { return findMax(root).data; } private TreeNode findMin(TreeNode subTree) { if (null == subTree) { return null; } else if (null == subTree.leftChild) { return subTree; } return findMin(subTree.leftChild); } private TreeNode findMax(TreeNode subTree) { if (null != subTree) { while (null != subTree.rightChild) { subTree = subTree.rightChild; } } return subTree; } // 添加节点进搜索树 private TreeNode add(TreeNode subTree, int data) { if (null == subTree) { return new TreeNode(data); } else if (data > subTree.data) { subTree.rightChild = add(subTree.rightChild, data); return subTree; } else if (data < subTree.data) { subTree.leftChild = add(subTree.leftChild, data); return subTree; } // 这里限定搜索树中元素不重复 return subTree; } private boolean contains(TreeNode subTree, int data) { if (null == subTree) { return false; } else if (data > subTree.data) { return contains(subTree.rightChild, data); } else if (data < subTree.data){ return contains(subTree.leftChild, data); } else { return true; } } private TreeNode remove(TreeNode subTree, int data) { if (null == subTree) { return null; } else if (data > subTree.data) { return remove(subTree.rightChild, data); } else if (data < subTree.data) { return remove(subTree.leftChild, data); } else if (null == subTree.leftChild || null == subTree.rightChild) { //节点匹配, 只有一个孩子或没有孩子 return (subTree.leftChild != null) ? subTree.leftChild : subTree.rightChild; } else { //节点匹配, 有两个孩子 subTree.data = findMin(subTree.rightChild).data; subTree.rightChild = remove(subTree.rightChild, subTree.data); return subTree; } } // 测试 public static void main(String[] args) { // 创建树 int[] values = new int[8]; for (int i = 0; i < 8; i++) { int num = (int) (Math.random() * 15); if (!checkDup(values, num)) values[i] = num; else i--; } System.out.println("generate Nums:" + Arrays.toString(values)); BSTree tree = new BSTree(new TreeNode(values[0])); for (int i = 1; i < values.length; i++) { tree.add(values[i]); } System.out.println("树高: " + TreeNode.height(tree.getRoot())); System.out.println("树大小: " + TreeNode.size(tree.getRoot())); System.out.println("前序遍历:"); TreeNode.nonRecPreOrder(tree.getRoot()); System.out.println("中序遍历:"); TreeNode.nonRecInOrder(tree.getRoot()); System.out.println("后序遍历:"); TreeNode.nonRecPostOrder(tree.getRoot()); } private static boolean checkDup(int[] arr, int value) { for (int i = 0; i < arr.length; i++) { if (arr[i] == value) return true; } return false; } }
标签:his dup empty out visit str size i++ 返回
原文地址:http://www.cnblogs.com/myJavaEE/p/6706637.html