标签:span 最小 坐标 etc splay 制作 xmlns ecc 部分
导语:在上一篇《kd 树算法之思路篇》中,我们介绍了如何用二叉树格式记录空间内的距离,并以其为依据进行高效的索引。在本篇文章中,我们将详细介绍 kd 树的构造以及 kd 树上的 kNN 算法。
作者:肖睿
编辑:宏观经济算命师
本文由JoinQuant量化课堂推出,本文的难度属于进阶(下),深度为 level-1
阅读本文前请掌握 kNN(level-1)的知识。
kd树是一个二叉树结构,它的每一个节点记载了【特征坐标,切分轴,指向左枝的指针,指向右枝的指针】。
其中,特征坐标是线性空间 RnRn 中的一个点 (x1,x2,…,xn)(x1,x2,…,xn)。
切分轴由一个整数 rr 表示,这里 1≤r≤n1≤r≤n,是我们在 nn 维空间中沿第 rr 维进行一次分割。
节点的左枝和右枝分别都是 kd 树,并且满足:如果 yy 是左枝的一个特征坐标,那么 yr≤xryr≤xr;并且如果 zz 是右枝的一个特征坐标,那么 zr≥xrzr≥xr。
给定一个数据样本集 S?RnS?Rn 和切分轴 rr,以下递归算法将构建一个基于该数据集的 kd 树,每一次循环制作一个节点:
?? 如果 |S|=1|S|=1,记录 SS 中唯一的一个点为当前节点的特征数据,并且不设左枝和右枝。(|S||S| 指集合 SS 中元素的数量)
?? 如果 |S|>1|S|>1:
?? 将 SS 内所有点按照第 rr 个坐标的大小进行排序;
?? 选出该排列后的中位元素(如果一共有偶数个元素,则选择中位左边或右边的元素,左或右并无影响),作为当前节点的特征坐 标,并且记录切分轴 rr;
?? 将 SLSL 设为在 SS 中所有排列在中位元素之前的元素; SRSR 设为在 SS 中所有排列在中位元素后的元素;
?? 当前节点的左枝设为以 SLSL 为数据集并且 rr 为切分轴制作出的 kd 树;当前节点的右枝设为以 SRSR 为数据集并且 rr 为切分轴制作出 的 kd 树。再设 r←(r+1)modnr←(r+1)modn。(这里,我们想轮流沿着每一个维度进行分割;modnmodn 是因为一共有 nn 个维度,在 沿着最后一个维度进行分割之后再重新回到第一个维度。)
上面抽象的定义和算法确实是很不好理解,举一个例子会清楚很多。首先随机在 R2R2 中随机生成 13 个点作为我们的数据集。起始的切分轴 r=0r=0;这里 r=0r=0 对应 xx 轴,而 r=1r=1 对应 yy 轴。
首先先沿 xx 坐标进行切分,我们选出 xx 坐标的中位点,获取最根部节点的坐标
并且按照该点的x坐标将空间进行切分,所有 xx 坐标小于 6.276.27 的数据用于构建左枝,xx坐标大于 6.276.27 的点用于构建右枝。
在下一步中 r=0+1=1mod2r=0+1=1mod2 对应 yy 轴,左右两边再按照 yy 轴的排序进行切分,中位点记载于左右枝的节点。得到下面的树,左边的xx 是指这该层的节点都是沿 xx 轴进行分割的。
空间的切分如下
下一步中 r≡1+1≡0mod2r≡1+1≡0mod2,对应 xx 轴,所以下面再按照 xx 坐标进行排序和切分,有
最后每一部分都只剩一个点,将他们记在最底部的节点中。因为不再有未被记录的点,所以不再进行切分。
就此完成了 kd 树的构造。
给定一个构建于一个样本集的 kd 树,下面的算法可以寻找距离某个点 pp 最近的 kk 个样本。
零、设 LL 为一个有 kk 个空位的列表,用于保存已搜寻到的最近点。
一、根据 pp 的坐标值和每个节点的切分向下搜索(也就是说,如果树的节点是按照 xr=axr=a 进行切分,并且 pp 的 rr 坐标小于 aa,则向左枝 进行搜索;反之则走右枝)。
二、当达到一个底部节点时,将其标记为访问过。如果 LL 里不足 kk 个点,则将当前节点的特征坐标加入 LL ;如果 LL 不为空并且当前节点 的特征与 pp 的距离小于 LL 里最长的距离,则用当前特征替换掉 LL 中离 pp 最远的点。
三、如果当前节点不是整棵树最顶端节点,执行 (a);反之,输出 LL,算法完成。
a.a. 向上爬一个节点。如果当前(向上爬之后的)节点未曾被访问过,将其标记为被访问过,然后执行 (1) 和 (2);如果当前节点被访 问过,再次执行 (a)。
1.1. 如果此时 LL 里不足 kk 个点,则将节点特征加入 LL;如果 LL 中已满 kk 个点,且当前节点与 pp 的距离小于 LL 里最长的距离, 则用节点特征替换掉 LL 中离最远的点。
2.2. 计算 pp 和当前节点切分线的距离。如果该距离大于等于 LL 中距离 pp 最远的距离并且 LL 中已有 kk 个点,则在切分线另一边不会有更近的点,执行 (三);如果该距离小于 LL 中最远的距离或者 LL 中不足 kk 个点,则切分线另一边可能有更近的点,因此在当前节点的另一个枝从 (一) 开始执行。
设我们想查询的点为 p=(?1,?5)p=(?1,?5),设距离函数是普通的 L2L2 距离,我们想找距离问题点最近的 k=3k=3 个点。如下:
首先执行 (一),我们按照切分找到最底部节点。首先,我们在顶部开始
和这个节点的 xx 轴比较一下,
pp 的 xx 轴更小。因此我们向左枝进行搜索:
这次对比 yy 轴,
pp 的 yy 值更小,因此向左枝进行搜索:
这个节点只有一个子枝,就不需要对比了。由此找到了最底部的节点 (?4.6,?10.55)(?4.6,?10.55)。
在二维图上是
此时我们执行 (二)。将当前结点标记为访问过,并记录下 L=[(?4.6,?10.55)]L=[(?4.6,?10.55)]。啊,访问过的节点就在二叉树上显示为被划掉的好了。
然后执行 (三),嗯,不是最顶端节点。好,执行 (a),我爬。上面的是 (?6.88,?5.4)(?6.88,?5.4)。
执行 (1),因为我们记录下的点只有一个,小于 k=3k=3,所以也将当前节点记录下,有 L=[(?4.6,?10.55),(?6.88,?5.4)]L=[(?4.6,?10.55),(?6.88,?5.4)]。再执行 (2),因为当前节点的左枝是空的,所以直接跳过,回到步骤 (三)。(三) 看了一眼,好,不是顶部,交给你了,(a)。于是乎 (a) 又往上爬了一节。
(1) 说,由于还是不够三个点,于是将当前点也记录下,有 L=[(?4.6,?10.55),(?6.88,?5.4),(1.24,?2.86)]L=[(?4.6,?10.55),(?6.88,?5.4),(1.24,?2.86)]。当然,当前结点变为被访问过的。
(2) 又发现,当前节点有其他的分枝,并且经计算得出 pp 点和 LL 中的三个点的距离分别是 6.62,5.89,3.106.62,5.89,3.10,但是 pp 和当前节点的分割线的距离只有 2.142.14,小于与 LL 的最大距离:
因此,在分割线的另一端可能有更近的点。于是我们在当前结点的另一个分枝从头执行 (一)。好,我们在红线这里:
要用 pp 和这个节点比较 xx 坐标:
pp 的 xx 坐标更大,因此探索右枝 (1.75,12.26)(1.75,12.26),并且发现右枝已经是最底部节点,因此启动 (二)。
经计算,(1.75,12.26)(1.75,12.26) 与 pp 的距离是 17.4817.48,要大于 pp 与 LL 的距离,因此我们不将其放入记录中。
然后 (三) 判断出不是顶端节点,呼出 (a),爬。
(1) 出来一算,这个节点与 pp 的距离是 4.914.91,要小于 pp 与 LL 的最大距离 6.626.62。
因此,我们用这个新的节点替代 LL 中离 pp 最远的 (?4.6,?10.55)(?4.6,?10.55)。
然后 (2) 又来了,我们比对 pp 和当前节点的分割线的距离
这个距离小于 LL 与 pp 的最小距离,因此我们要到当前节点的另一个枝执行 (一)。当然,那个枝只有一个点,直接到 (二)。
计算距离发现这个点离 pp 比 LL 更远,因此不进行替代。
(三) 发现不是顶点,所以呼出 (a)。我们向上爬,
这个是已经访问过的了,所以再来(a),
好,(a)再爬,
啊!到顶点了。所以完了吗?当然不,还没轮到 (三) 呢。现在是 (1) 的回合。
我们进行计算比对发现顶端节点与p的距离比L还要更远,因此不进行更新。
然后是 (2),计算 pp 和分割线的距离发现也是更远。
因此也不需要检查另一个分枝。
然后执行 (三),判断当前节点是顶点,因此计算完成!输出距离 pp 最近的三个样本是 L=[(?6.88,?5.4),(1.24,?2.86),(?2.96,?2.5)]L=[(?6.88,?5.4),(1.24,?2.86),(?2.96,?2.5)]。
kd 树的 kNN 算法节约了很大的计算量(虽然这点在少量数据上很难体现),但在理解上偏于复杂,希望本篇中的实例可以让读者清晰地理解这个算法。喜欢动手的读者可以尝试自己用代码实现 kd 树算法,但也可以用现成的机器学习包 scikit-learn 来进行计算。量化课堂的下一篇文章就将讲解如何用 scikit-learn 进行 kNN 分类。
本文由JoinQuant量化课堂推出,版权归JoinQuant所有,商业转载请联系我们获得授权,非商业转载请注明出处。
文章更迭记录:
v1.2,2016-11-01,修正算法,感谢 nemo1982 指出
v1.1,2016-09-14,修正错字,感谢 nico 指出
v1.0,2016-09-12,文章上线
标签:span 最小 坐标 etc splay 制作 xmlns ecc 部分
原文地址:http://www.cnblogs.com/baocong/p/6762720.html