标签:乘法 art tool 相同 转换 最大 nand tin add
原因:js按照2进制来处理小数的加减乘除,在arg1的基础上 将arg2的精度进行扩展或逆扩展匹配,所以会出现如下情况.
javascript(js)的小数点加减乘除问题,是一个js的bug如0.3*1 = 0.2999999999等,下面列出可以完美求出相应精度的四种js算法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
|
function accDiv(arg1,arg2){ var t1=0,t2=0,r1,r2; try {t1=arg1.toString().split( "." )[1].length} catch (e){} try {t2=arg2.toString().split( "." )[1].length} catch (e){} with (Math){ r1=Number(arg1.toString().replace( "." , "" )) r2=Number(arg2.toString().replace( "." , "" )) return accMul((r1/r2),pow(10,t2-t1)); } } //乘法 function accMul(arg1,arg2) { var m=0,s1=arg1.toString(),s2=arg2.toString(); try {m+=s1.split( "." )[1].length} catch (e){} try {m+=s2.split( "." )[1].length} catch (e){} return Number(s1.replace( "." , "" ))*Number(s2.replace( "." , "" ))/Math.pow(10,m) } //加法 function accAdd(arg1,arg2){ var r1,r2,m; try {r1=arg1.toString().split( "." )[1].length} catch (e){r1=0} try {r2=arg2.toString().split( "." )[1].length} catch (e){r2=0} m=Math.pow(10,Math.max(r1,r2)) return (arg1*m+arg2*m)/m } //减法 function Subtr(arg1,arg2){ var r1,r2,m,n; try {r1=arg1.toString().split( "." )[1].length} catch (e){r1=0} try {r2=arg2.toString().split( "." )[1].length} catch (e){r2=0} m=Math.pow(10,Math.max(r1,r2)); n=(r1>=r2)?r1:r2; return ((arg1*m-arg2*m)/m).toFixed(n); } |
下面我们来具体分析洗在JavaScript中关于数字精度的丢失问题
一、JS数字精度丢失的一些典型问题
1. 两个简单的浮点数相加
1
|
0.1 + 0.2 != 0.3 // true |
Firebug
这真不是 Firebug 的问题,可以用alert试试 (哈哈开玩笑)。
看看Java的运算结果
再看看Python
2. 大整数运算
1
|
9999999999999999 == 10000000000000001 // ? |
Firebug
16位和17位数竟然相等,没天理啊。
又如
1
2
|
var x = 9007199254740992 x + 1 == x // ? |
看结果
三观又被颠覆了。
3. toFixed 不会四舍五入(Chrome)
1
|
1.335.toFixed(2) // 1.33 |
Firebug
线上曾经发生过 Chrome 中价格和其它浏览器不一致,正是因为 toFixed 兼容性问题导致
二、JS 数字丢失精度的原因
计算机的二进制实现和位数限制有些数无法有限表示。就像一些无理数不能有限表示,如 圆周率 3.1415926...,1.3333... 等。JS 遵循 IEEE 754 规范,采用双精度存储(double precision),占用 64 bit。如图
意义
浮点数,比如
1
2
|
0.1 >> 0.0001 1001 1001 1001…(1001无限循环) 0.2 >> 0.0011 0011 0011 0011…(0011无限循环) |
此时只能模仿十进制进行四舍五入了,但是二进制只有 0 和 1 两个,于是变为 0 舍 1 入。这即是计算机中部分浮点数运算时出现误差,丢失精度的根本原因。
大整数的精度丢失和浮点数本质上是一样的,尾数位最大是 52 位,因此 JS 中能精准表示的最大整数是 Math.pow(2, 53),十进制即 9007199254740992。
大于 9007199254740992 的可能会丢失精度
1
2
3
|
9007199254740992 >> 10000000000000...000 // 共计 53 个 0 9007199254740992 + 1 >> 10000000000000...001 // 中间 52 个 0 9007199254740992 + 2 >> 10000000000000...010 // 中间 51 个 0 |
实际上
1
2
3
4
|
9007199254740992 + 1 // 丢失 9007199254740992 + 2 // 未丢失 9007199254740992 + 3 // 丢失 9007199254740992 + 4 // 未丢失 |
结果如图
以上,可以知道看似有穷的数字, 在计算机的二进制表示里却是无穷的,由于存储位数限制因此存在“舍去”,精度丢失就发生了。
想了解更深入的分析可以看这篇论文(又长又臭):What Every Computer Scientist Should Know About Floating-Point Arithmetic
三、解决方案
对于整数,前端出现问题的几率可能比较低,毕竟很少有业务需要需要用到超大整数,只要运算结果不超过 Math.pow(2, 53) 就不会丢失精度。
对于小数,前端出现问题的几率还是很多的,尤其在一些电商网站涉及到金额等数据。解决方式:把小数放到位整数(乘倍数),再缩小回原来倍数(除倍数)
1
2
|
// 0.1 + 0.2 (0.1*10 + 0.2*10) / 10 == 0.3 // true |
以下是我写了一个对象,对小数的加减乘除运算丢失精度做了屏蔽。当然转换后的整数依然不能超过 9007199254740992。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
/** * floatObj 包含加减乘除四个方法,能确保浮点数运算不丢失精度 * * 我们知道计算机编程语言里浮点数计算会存在精度丢失问题(或称舍入误差),其根本原因是二进制和实现位数限制有些数无法有限表示 * 以下是十进制小数对应的二进制表示 * 0.1 >> 0.0001 1001 1001 1001…(1001无限循环) * 0.2 >> 0.0011 0011 0011 0011…(0011无限循环) * 计算机里每种数据类型的存储是一个有限宽度,比如 JavaScript 使用 64 位存储数字类型,因此超出的会舍去。舍去的部分就是精度丢失的部分。 * * ** method ** * add / subtract / multiply /divide * * ** explame ** * 0.1 + 0.2 == 0.30000000000000004 (多了 0.00000000000004) * 0.2 + 0.4 == 0.6000000000000001 (多了 0.0000000000001) * 19.9 * 100 == 1989.9999999999998 (少了 0.0000000000002) * * floatObj.add(0.1, 0.2) >> 0.3 * floatObj.multiply(19.9, 100) >> 1990 * */ var floatObj = function () { /* * 判断obj是否为一个整数 */ function isInteger(obj) { return Math.floor(obj) === obj } /* * 将一个浮点数转成整数,返回整数和倍数。如 3.14 >> 314,倍数是 100 * @param floatNum {number} 小数 * @return {object} * {times:100, num: 314} */ function toInteger(floatNum) { var ret = {times: 1, num: 0} if (isInteger(floatNum)) { ret.num = floatNum return ret } var strfi = floatNum + ‘‘ var dotPos = strfi.indexOf( ‘.‘ ) var len = strfi.substr(dotPos+1).length var times = Math.pow(10, len) var intNum = parseInt(floatNum * times + 0.5, 10) ret.times = times ret.num = intNum return ret } /* * 核心方法,实现加减乘除运算,确保不丢失精度 * 思路:把小数放大为整数(乘),进行算术运算,再缩小为小数(除) * * @param a {number} 运算数1 * @param b {number} 运算数2 * @param digits {number} 精度,保留的小数点数,比如 2, 即保留为两位小数 * @param op {string} 运算类型,有加减乘除(add/subtract/multiply/divide) * */ function operation(a, b, digits, op) { var o1 = toInteger(a) var o2 = toInteger(b) var n1 = o1.num var n2 = o2.num var t1 = o1.times var t2 = o2.times var max = t1 > t2 ? t1 : t2 var result = null switch (op) { case ‘add‘ : if (t1 === t2) { // 两个小数位数相同 result = n1 + n2 } else if (t1 > t2) { // o1 小数位 大于 o2 result = n1 + n2 * (t1 / t2) } else { // o1 小数位 小于 o2 result = n1 * (t2 / t1) + n2 } return result / max case ‘subtract‘ : if (t1 === t2) { result = n1 - n2 } else if (t1 > t2) { result = n1 - n2 * (t1 / t2) } else { result = n1 * (t2 / t1) - n2 } return result / max case ‘multiply‘ : result = (n1 * n2) / (t1 * t2) return result case ‘divide‘ : result = (n1 / n2) * (t2 / t1) return result } } // 加减乘除的四个接口 function add(a, b, digits) { return operation(a, b, digits, ‘add‘ ) } function subtract(a, b, digits) { return operation(a, b, digits, ‘subtract‘ ) } function multiply(a, b, digits) { return operation(a, b, digits, ‘multiply‘ ) } function divide(a, b, digits) { return operation(a, b, digits, ‘divide‘ ) } // exports return { add: add, subtract: subtract, multiply: multiply, divide: divide } }(); |
toFixed的修复如下
1
2
3
4
5
6
7
|
// toFixed 修复 function toFixed(num, s) { var times = Math.pow(10, s) var des = num * times + 0.5 des = parseInt(des, 10) / times return des + ‘‘ } |
标签:乘法 art tool 相同 转换 最大 nand tin add
原文地址:http://www.cnblogs.com/firstdream/p/6768479.html