标签:art print 优秀 乘法逆元 分组 原理 ram random sage
以前也接触过RSA加密算法,感觉这个东西太神秘了,是数学家的事,和我无关。但是,看了很多关于RSA加密算法原理的资料之后,我发现其实原理并不是我们想象中那么复杂,弄懂之后发现原来就只是这样而已..
学过算法的朋友都知道,计算机中的算法其实就是数学运算。所以,再讲解RSA加密算法之前,有必要了解一下一些必备的数学知识。我们就从数学知识开始讲解。
RSA加密算法中,只用到素数、互质数、指数运算、模运算等几个简单的数学知识。所以,我们也需要了解这几个概念即可。
素数又称质数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。这个概念,我们在上初中,甚至小学的时候都学过了,这里就不再过多解释了。
百度百科上的解释是:公因数只有1的两个数,叫做互质数。;维基百科上的解释是:互质,又称互素。若N个整数的最大公因子是1,则称这N个整数互质。
常见的互质数判断方法主要有以下几种:
指数运算又称乘方计算,计算结果称为幂。nm指将n自乘m次。把nm看作乘方的结果,叫做”n的m次幂”或”n的m次方”。其中,n称为“底数”,m称为“指数”。
模运算即求余运算。“模”是“Mod”的音译。和模运算紧密相关的一个概念是“同余”。数学上,当两个整数除以同一个正整数,若得相同余数,则二整数同余。
两个整数a,b,若它们除以正整数m所得的余数相等,则称a,b对于模m同余,记作: a ≡ b (mod m);读作:a同余于b模m,或者,a与b关于模m同余。例如:26 ≡ 14 (mod 12)。
RSA是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。
假设Alice想要通过一个不可靠的媒体接收Bob的一条私人讯息。她可以用以下的方式来产生一个公钥和一个私钥:
(N,e)是公钥,(N,d)是私钥。Alice将她的公钥(N,e)传给Bob,而将她的私钥(N,d)藏起来。
假设Bob想给Alice送一个消息m,他知道Alice产生的N和e。他使用起先与Alice约好的格式将m转换为一个小于N的整数n,比如他可以将每一个字转换为这个字的Unicode码,然后将这些数字连在一起组成一个数字。假如他的信息非常长的话,他可以将这个信息分为几段,然后将每一段转换为n。用下面这个公式他可以将n加密为c:
ne ≡ c (mod N)
计算c并不复杂。Bob算出c后就可以将它传递给Alice。
Alice得到Bob的消息c后就可以利用她的密钥d来解码。她可以用以下这个公式来将c转换为n:
cd ≡ n (mod N)
得到n后,她可以将原来的信息m重新复原。
解码的原理是:
cd ≡ n e·d(mod N)
以及ed ≡ 1 (mod p-1)和ed ≡ 1 (mod q-1)。由费马小定理可证明(因为p和q是质数)
n e·d ≡ n (mod p) 和 n e·d ≡ n (mod q)
这说明(因为p和q是不同的质数,所以p和q互质)
n e·d ≡ n (mod pq)
RSA也可以用来为一个消息署名。假如甲想给乙传递一个署名的消息的话,那么她可以为她的消息计算一个散列值(Message digest),然后用她的密钥(private key)加密这个散列值并将这个“署名”加在消息的后面。这个消息只有用她的公钥才能被解密。乙获得这个消息后可以用甲的公钥解密这个散列值,然后将这个数据与他自己为这个消息计算的散列值相比较。假如两者相符的话,那么他就可以知道发信人持有甲的密钥,以及这个消息在传播路径上没有被篡改过。
下面,开始我们的重点环节:编程实践。在开始编程前,我们通过计算,来确定公钥和密钥。
到这里,公钥和密钥已经确定。公钥为(N, e) = (33, 3),密钥为(N, d) = (33, 7)。
下面我们使用Java来实现一下加密和解密的过程。具体代码如下:
RSA算法实现:
RSA算法结果:
加密前:24
加密后:30
解密后:24
(看程序最清楚了,对于要加密的数字m, m^e%N=c, c就是加密之后的密文。c^d%N=m, 就能解密得到m)
当p和q是一个大素数的时候,从它们的积pq去分解因子p和q,这是一个公认的数学难题。然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。
1994年彼得·秀尔(Peter Shor)证明一台量子计算机可以在多项式时间内进行因数分解。假如量子计算机有朝一日可以成为一种可行的技术的话,那么秀尔的算法可以淘汰RSA和相关的衍生算法。(即依赖于分解大整数困难性的加密算法)
另外,假如N的长度小于或等于256位,那么用一台个人电脑在几个小时内就可以分解它的因子了。1999年,数百台电脑合作分解了一个512位长的N。1997年后开发的系统,用户应使用1024位密钥,证书认证机构应用2048位或以上。
虽然RSA加密算法作为目前最优秀的公钥方案之一,在发表三十多年的时间里,经历了各种攻击的考验,逐渐为人们接受。但是,也不是说RSA没有任何缺点。由于没有从理论上证明破译RSA的难度与大数分解难度的等价性。所以,RSA的重大缺陷是无法从理论上把握它的保密性能如何。在实践上,RSA也有一些缺点:
算法基本思路:
1.公钥与私钥的生成:
(1)随机挑选两个大质数 p 和 q,构造N = p*q;
(2)计算欧拉函数φ(N) = (p-1) * (q-1);
(3)随机挑选e,使得gcd(e, φ(N)) = 1,即 e 与 φ(N) 互素;
(4)计算d,使得 e*d ≡ 1 (mod φ(N)),即d 是e 的乘法逆元。
此时,公钥为(e, N),私钥为(d, N),公钥公开,私钥自己保管。
2.加密信息:
(1)待加密信息(明文)为 M,M < N;(因为要做模运算,若M大于N,则后面的运算不会成立,因此当信息比N要大时,应该分块加密)
(2)密文C = Me mod N
(3)解密Cd mod N = (Me)d mod N = Md*e mod N ;
要理解为什么能解密?要用到欧拉定理(其实是费马小定理的推广)aφ(n) ≡ 1 (mod n),再推广:aφ(n)*k ≡ 1 (mod n),得:aφ(n)*k+1 ≡ a (mod n)
注意到 e*d ≡ 1 mod φ(N),即:e*d = 1 + k*φ(N)。
因此,Md*e mod N = M1 + k*φ(N) mod N = M
简单来说,别人用我的公钥加密信息发给我,然后我用私钥解密。
3.数字签名:
(1)密文C = Md mod N
(2)解密M = Ce mod N = (Md)e mod N = Md*e mod N = M ;(原理同上)
简单来说,我用自己的密钥加密签名,别人用我的公钥解密可以看到这是我的签名。注意,这个不具有隐私性,即任何人都可以解密此签名。
算法的安全性:基于大整数N难以分解出p和q,构造φ(N);或由N直接构造φ(N)同样难。
算法的实现:
1.快速幂取模;http://www.cnblogs.com/7hat/p/3398394.html
2.素性测试;http://www.cnblogs.com/7hat/p/3400831.html
3.扩展欧几里得求乘法逆元和最大公约数;http://www.cnblogs.com/7hat/p/3406494.html
实现代码:
import random def fastExpMod(b, e, m): """ e = e0*(2^0) + e1*(2^1) + e2*(2^2) + ... + en * (2^n) b^e = b^(e0*(2^0) + e1*(2^1) + e2*(2^2) + ... + en * (2^n)) = b^(e0*(2^0)) * b^(e1*(2^1)) * b^(e2*(2^2)) * ... * b^(en*(2^n)) b^e mod m = ((b^(e0*(2^0)) mod m) * (b^(e1*(2^1)) mod m) * (b^(e2*(2^2)) mod m) * ... * (b^(en*(2^n)) mod m) mod m """ result = 1 while e != 0: if (e&1) == 1: # ei = 1, then mul result = (result * b) % m e >>= 1 # b, b^2, b^4, b^8, ... , b^(2^n) b = (b*b) % m return result def primeTest(n): q = n - 1 k = 0 #Find k, q, satisfied 2^k * q = n - 1 while q % 2 == 0: k += 1; q /= 2 a = random.randint(2, n-2); #If a^q mod n= 1, n maybe is a prime number if fastExpMod(a, q, n) == 1: return "inconclusive" #If there exists j satisfy a ^ ((2 ^ j) * q) mod n == n-1, n maybe is a prime number for j in range(0, k): if fastExpMod(a, (2**j)*q, n) == n - 1: return "inconclusive" #a is not a prime number return "composite" def findPrime(halfkeyLength): while True: #Select a random number n n = random.randint(0, 1<<halfkeyLength) if n % 2 != 0: found = True #If n satisfy primeTest 10 times, then n should be a prime number for i in range(0, 10): if primeTest(n) == "composite": found = False break if found: return n def extendedGCD(a, b): #a*xi + b*yi = ri if b == 0: return (1, 0, a) #a*x1 + b*y1 = a x1 = 1 y1 = 0 #a*x2 + b*y2 = b x2 = 0 y2 = 1 while b != 0: q = a / b #ri = r(i-2) % r(i-1) r = a % b a = b b = r #xi = x(i-2) - q*x(i-1) x = x1 - q*x2 x1 = x2 x2 = x #yi = y(i-2) - q*y(i-1) y = y1 - q*y2 y1 = y2 y2 = y return(x1, y1, a) def selectE(fn, halfkeyLength): while True: #e and fn are relatively prime e = random.randint(0, 1<<halfkeyLength) (x, y, r) = extendedGCD(e, fn) if r == 1: return e def computeD(fn, e): (x, y, r) = extendedGCD(fn, e) #y maybe < 0, so convert it if y < 0: return fn + y return y def keyGeneration(keyLength): #generate public key and private key p = findPrime(keyLength/2) q = findPrime(keyLength/2) n = p * q fn = (p-1) * (q-1) e = selectE(fn, keyLength/2) d = computeD(fn, e) return (n, e, d) def encryption(M, e, n): #RSA C = M^e mod n return fastExpMod(M, e, n) def decryption(C, d, n): #RSA M = C^d mod n return fastExpMod(C, d, n) #Unit Testing (n, e, d) = keyGeneration(1024) #AES keyLength = 256 X = random.randint(0, 1<<256) C = encryption(X, e, n) M = decryption(C, d, n) print "PlainText:", X print "Encryption of plainText:", C print "Decryption of cipherText:", M print "The algorithm is correct:", X == M Python
标签:art print 优秀 乘法逆元 分组 原理 ram random sage
原文地址:http://www.cnblogs.com/test404/p/6789640.html