标签:... nts bottom fonts 基本 ret form data array 范围
定义是变量向量减去均值向量,然后乘以变量向量减去均值向量的转置再求均值。比如x是变量,μ是均值,协方差矩阵等于E[(x-μ)(x-μ)^t],物理意义是这种,比如x=(x1,x2,...,xi)那么协方差矩阵的第m行n列的数为xm与xn的协方差,若m=n。则是xn的方差。假设x的元素之间是独立的,那么协方差矩阵仅仅有对角线是有值,由于x独立的话对于m≠n的情况xm与xn的协方差为0。另外协方差矩阵是对称的。
‘‘‘ @author: Garvin ‘‘‘ from numpy import * import matplotlib.pyplot as plt def loadDataSet(fileName, delim=‘\t‘): fr = open(fileName) stringArr = [line.strip().split(delim) for line in fr.readlines()] datArr = [map(float,line) for line in stringArr] return mat(datArr) def pca(dataMat, topNfeat=9999999): meanVals = mean(dataMat, axis=0) meanRemoved = dataMat - meanVals #remove mean covMat = cov(meanRemoved, rowvar=0) eigVals,eigVects = linalg.eig(mat(covMat)) eigValInd = argsort(eigVals) #sort, sort goes smallest to largest eigValInd = eigValInd[:-(topNfeat+1):-1] #cut off unwanted dimensions redEigVects = eigVects[:,eigValInd] #reorganize eig vects largest to smallest lowDDataMat = meanRemoved * redEigVects#transform data into new dimensions reconMat = (lowDDataMat * redEigVects.T) + meanVals return lowDDataMat, reconMat def plotBestFit(dataSet1,dataSet2): dataArr1 = array(dataSet1) dataArr2 = array(dataSet2) n = shape(dataArr1)[0] n1=shape(dataArr2)[0] xcord1 = []; ycord1 = [] xcord2 = []; ycord2 = [] xcord3=[];ycord3=[] j=0 for i in range(n): xcord1.append(dataArr1[i,0]); ycord1.append(dataArr1[i,1]) xcord2.append(dataArr2[i,0]); ycord2.append(dataArr2[i,1]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=30, c=‘red‘, marker=‘s‘) ax.scatter(xcord2, ycord2, s=30, c=‘green‘) plt.xlabel(‘X1‘); plt.ylabel(‘X2‘); plt.show() if __name__==‘__main__‘: mata=loadDataSet(‘/Users/hakuri/Desktop/testSet.txt‘) a,b= pca(mata, 2)
參数二相应的是移动坐标轴后的矩阵。
/********************************
* 本文来自博客 “李博Garvin“
* 转载请标明出处:http://blog.csdn.net/buptgshengod
******************************************/
标签:... nts bottom fonts 基本 ret form data array 范围
原文地址:http://www.cnblogs.com/wzjhoutai/p/6819611.html