码迷,mamicode.com
首页 > 编程语言 > 详细

Python中如何使用最小二乘法

时间:2017-05-07 21:18:30      阅读:240      评论:0      收藏:0      [点我收藏+]

标签:python   技术   如何   模型   平面   

      之所以说”使用”而不是”实现”,是因为python的相关类库已经帮我们实现了具体算法,而我们只要学会使用就可以了。随着对技术的逐渐掌握及积累,当类库中的算法已经无法满足自身需求的时候,我们也可以尝试通过自己的方式实现各种算法。

      言归正传,什么是”最小二乘法”呢?

      定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。

      作用:利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

      原则:以”残差平方和最小”确定直线位置(在数理统计中,残差是指实际观察值与估计值之间的差)

      基本思路:对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn),对于平面中的这n个点,可以使用无数条曲线来拟合。而线性回归就是要求样本回归函数尽可能好地拟合这组值,也就是说,这条直线应该尽可能的处于样本数据的中心位置。因此,选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。

      实现代码如下,代码中已经详细的给了注释:

技术分享

##最小二乘法import numpy as np   ##科学计算库 
import scipy as sp   ##在numpy基础上实现的部分算法库import matplotlib.pyplot as plt  ##绘图库from scipy.optimize import leastsq  ##引入最小二乘法算法‘‘‘
     设置样本数据,真实数据需要在这里处理‘‘‘##样本数据(Xi,Yi),需要转换成数组(列表)形式Xi=np.array([6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2])
Yi=np.array([5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3])‘‘‘
    设定拟合函数和偏差函数
    函数的形状确定过程:
    1.先画样本图像
    2.根据样本图像大致形状确定函数形式(直线、抛物线、正弦余弦等)‘‘‘##需要拟合的函数func :指定函数的形状def func(p,x):
    k,b=p    return k*x+b##偏差函数:x,y都是列表:这里的x,y更上面的Xi,Yi中是一一对应的def error(p,x,y):    return func(p,x)-y‘‘‘
    主要部分:附带部分说明
    1.leastsq函数的返回值tuple,第一个元素是求解结果,第二个是求解的代价值(个人理解)
    2.官网的原话(第二个值):Value of the cost function at the solution
    3.实例:Para=>(array([ 0.61349535,  1.79409255]), 3)
    4.返回值元组中第一个值的数量跟需要求解的参数的数量一致‘‘‘#k,b的初始值,可以任意设定,经过几次试验,发现p0的值会影响cost的值:Para[1]p0=[1,20]#把error函数中除了p0以外的参数打包到args中(使用要求)Para=leastsq(error,p0,args=(Xi,Yi))#读取结果k,b=Para[0]print("k=",k,"b=",b)print("cost:"+str(Para[1]))print("求解的拟合直线为:")print("y="+str(round(k,2))+"x+"+str(round(b,2)))‘‘‘
   绘图,看拟合效果.
   matplotlib默认不支持中文,label设置中文的话需要另行设置
   如果报错,改成英文就可以‘‘‘#画样本点plt.figure(figsize=(8,6)) ##指定图像比例: 8:6plt.scatter(Xi,Yi,color="green",label="样本数据",linewidth=2) 

#画拟合直线x=np.linspace(0,12,100) ##在0-15直接画100个连续点y=k*x+b ##函数式plt.plot(x,y,color="red",label="拟合直线",linewidth=2) 
plt.legend() #绘制图例plt.show()

技术分享

  结果如下所示: 

  输出结果:

      k= 0.900458420439 b= 0.831055638877
      cost:1
      求解的拟合直线为:
      y=0.9x+0.83

  绘图结果:

      技术分享

 

  


Python中如何使用最小二乘法

标签:python   技术   如何   模型   平面   

原文地址:http://12883930.blog.51cto.com/12873930/1922856

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!