标签:test sign log ima bsp count 概率 int 技术
前言:
决策树的一个重要的任务 是为了理解数据中所蕴含的知识信息,因此决策树可以使用不熟悉的数据集合,并从中提取出一系列规则,这些机器根据数据集创建规则的过程,就是机器学习的过程。
决策树优点:
1:计算复杂度不高
2:输出结果易于理解
3:对中间值的缺失不敏感
4:可以处理不相关特征数据
缺点:可能会产生过度匹配问题
使用数据类型:数值型和标称型
基于Python逐步实现Decision Tree(决策树),分为以下几个步骤:
加载数据集
熵的计算
根据最佳分割feature进行数据分割
根据最大信息增益选择最佳分割feature
递归构建决策树
样本分类
1.加载数据集
from numpy import *
#load "iris.data" to workspace
traindata = loadtxt("D:\ZJU_Projects\machine learning\ML_Action\Dataset\Iris.data",delimiter = ‘,‘,usecols = (0,1,2,3),dtype = float)
trainlabel = loadtxt("D:\ZJU_Projects\machine learning\ML_Action\Dataset\Iris.data",delimiter = ‘,‘,usecols = (range(4,5)),dtype = str)
feaname = ["#0","#1","#2","#3"] # feature names of the 4 attributes (features)
2. 熵的计算
entropy是香农提出来的(信息论大牛),定义见wiki
注意这里的entropy是H(C|X=xi)而非H(C|X), H(C|X)的计算见第下一个点,还要乘以概率加和
Code:
from math import log
def calentropy(label):
n = label.size # the number of samples
#print n
count = {} #create dictionary "count"
for curlabel in label:
if curlabel not in count.keys():
count[curlabel] = 0
count[curlabel] += 1
entropy = 0
#print count
for key in count:
pxi = float(count[key])/n #notice transfering to float first
entropy -= pxi*log(pxi,2)
return entropy
#testcode:
#x = calentropy(trainlabel)
3. 根据最佳分割feature进行数据分割
假定我们已经得到了最佳分割feature,在这里进行分割(最佳feature为splitfea_idx)
第二个函数idx2data是根据splitdata得到的分割数据的两个index集合返回datal (samples less than pivot), datag(samples greater than pivot), labell, labelg。 这里我们根据所选特征的平均值作为pivot
Code:
#split the dataset according to label "splitfea_idx"
def splitdata(oridata,splitfea_idx):
arg = args[splitfea_idx] #get the average over all dimensions
idx_less = [] #create new list including data with feature less than pivot
idx_greater = [] #includes entries with feature greater than pivot
n = len(oridata)
for idx in range(n):
d = oridata[idx]
if d[splitfea_idx] < arg:
#add the newentry into newdata_less set
idx_less.append(idx)
else:
idx_greater.append(idx)
return idx_less,idx_greater
#testcode:2
#idx_less,idx_greater = splitdata(traindata,2)
#give the data and labels according to index
def idx2data(oridata,label,splitidx,fea_idx):
idxl = splitidx[0] #split_less_indices
idxg = splitidx[1] #split_greater_indices
datal = []
datag = []
labell = []
labelg = []
for i in idxl:
datal.append(append(oridata[i][:fea_idx],oridata[i][fea_idx+1:]))
for i in idxg:
datag.append(append(oridata[i][:fea_idx],oridata[i][fea_idx+1:]))
labell = label[idxl]
labelg = label[idxg]
return datal,datag,labell,labelg
这里args是参数,决定分裂节点的阈值(每个参数对应一个feature,大于该值分到>branch,小于该值分到<branch),我们可以定义如下:
args = mean(traindata,axis = 0)
测试:按特征2进行分类,得到的less和greater set of indices分别为:
也就是按args[2]进行样本集分割,<和>args[2]的branch分别有57和93个样本。
4. 根据最大信息增益选择最佳分割feature
信息增益为代码中的info_gain, 注释中是熵的计算
Code:
#select the best branch to split
def choosebest_splitnode(oridata,label):
n_fea = len(oridata[0])
n = len(label)
base_entropy = calentropy(label)
best_gain = -1
for fea_i in range(n_fea): #calculate entropy under each splitting feature
cur_entropy = 0
idxset_less,idxset_greater = splitdata(oridata,fea_i)
prob_less = float(len(idxset_less))/n
prob_greater = float(len(idxset_greater))/n
#entropy(value|X) = \sum{p(xi)*entropy(value|X=xi)}
cur_entropy += prob_less*calentropy(label[idxset_less])
cur_entropy += prob_greater * calentropy(label[idxset_greater])
info_gain = base_entropy - cur_entropy #notice gain is before minus after
if(info_gain>best_gain):
best_gain = info_gain
best_idx = fea_i
return best_idx
#testcode:
#x = choosebest_splitnode(traindata,trainlabel)
这里的测试针对所有数据,分裂一次选择哪个特征呢?
5. 递归构建决策树
详见code注释,buildtree递归地构建树。
递归终止条件:
①该branch内没有样本(subset为空) or
②分割出的所有样本属于同一类 or
③由于每次分割消耗一个feature,当没有feature的时候停止递归,返回当前样本集中大多数sample的label
#create the decision tree based on information gain
def buildtree(oridata, label):
if label.size==0: #if no samples belong to this branch
return "NULL"
listlabel = label.tolist()
#stop when all samples in this subset belongs to one class
if listlabel.count(label[0])==label.size:
return label[0]
#return the majority of samples‘ label in this subset if no extra features avaliable
if len(feanamecopy)==0:
cnt = {}
for cur_l in label:
if cur_l not in cnt.keys():
cnt[cur_l] = 0
cnt[cur_l] += 1
maxx = -1
for keys in cnt:
if maxx < cnt[keys]:
maxx = cnt[keys]
maxkey = keys
return maxkey
bestsplit_fea = choosebest_splitnode(oridata,label) #get the best splitting feature
print bestsplit_fea,len(oridata[0])
cur_feaname = feanamecopy[bestsplit_fea] # add the feature name to dictionary
print cur_feaname
nodedict = {cur_feaname:{}}
del(feanamecopy[bestsplit_fea]) #delete current feature from feaname
split_idx = splitdata(oridata,bestsplit_fea) #split_idx: the split index for both less and greater
data_less,data_greater,label_less,label_greater = idx2data(oridata,label,split_idx,bestsplit_fea)
#build the tree recursively, the left and right tree are the "<" and ">" branch, respectively
nodedict[cur_feaname]["<"] = buildtree(data_less,label_less)
nodedict[cur_feaname][">"] = buildtree(data_greater,label_greater)
return nodedict
#testcode:
#mytree = buildtree(traindata,trainlabel)
#print mytree
Result:
mytree就是我们的结果,#1表示当前使用第一个feature做分割,‘<‘和‘>‘分别对应less 和 greater的数据。
6. 样本分类
根据构建出的mytree进行分类,递归走分支
#classify a new sample
def classify(mytree,testdata):
if type(mytree).__name__ != ‘dict‘:
return mytree
fea_name = mytree.keys()[0] #get the name of first feature
fea_idx = feaname.index(fea_name) #the index of feature ‘fea_name‘
val = testdata[fea_idx]
nextbranch = mytree[fea_name]
#judge the current value > or < the pivot (average)
if val>args[fea_idx]:
nextbranch = nextbranch[">"]
else:
nextbranch = nextbranch["<"]
return classify(nextbranch,testdata)
#testcode
tt = traindata[0]
x = classify(mytree,tt)
print x
Result:
为了验证代码准确性,我们换一下args参数,把它们都设成0(很小)
args = [0,0,0,0]
建树和分类的结果如下:
可见没有小于pivot(0)的项,于是dict中每个<的key对应的value都为空。
微信扫一扫
关注该公众号
标签:test sign log ima bsp count 概率 int 技术
原文地址:http://www.cnblogs.com/lianjiehere/p/6862890.html