码迷,mamicode.com
首页 > 编程语言 > 详细

gensim自然语言处理

时间:2017-05-17 13:51:05      阅读:275      评论:0      收藏:0      [点我收藏+]

标签:lte   class   .json   __iter__   五一   gen   input   put   打印   

最近在做词语的相似度做比较,就选用了gensim

首先要安装gensim库,此处省略,参看官网http://radimrehurek.com/gensim/install.html

在网上下了一些词库

{"date": "2016-05-01", "content": "京东家电  沸腾五一\n买家电 上京东4.28-5.7\n邯郸京东帮联动会\n馆陶站   大型文艺汇演\n五一会员狂欢会,凭券入场更实惠\n买家电 ,上京东,突破底线  限时抢购!\n京东帮\n馆陶文卫街服务店\n大型文艺汇演现场\n活动日期2}

import sys
import jieba
reload(sys)
sys.setdefaultencoding("utf-8")
from gensim import corpora,models,similarities
alist = []

import json

def fenci():
for i_text in open("xaa.json"): #读取文文件
f_json = json.loads(i_text)
kk = f_json["content"]
item_str = jieba.cut(kk.encode("utf-8"),cut_all=True) #使用jieba分词
a = " ".join(item_str)
alist.append(a)

fenci()

class MyCorpus(object):
def __iter__(self):
for item_str in alist:
yield item_str.split(‘ ‘)

Corp = MyCorpus()
dictionary = corpora.Dictionary(Corp)
corpus = [dictionary.doc2bow(text) for text in Corp]

tfidf = models.TfidfModel(corpus)

corpus_tfidf = tfidf[corpus]
def test_kk(test):
test_cut_raw_1 = jieba.cut(test)
doc_new = " ".join(test_cut_raw_1)
test_corpus_1 = dictionary.doc2bow(doc_new.split())
vec_tfidf = tfidf[test_corpus_1]

index = similarities.MatrixSimilarity(corpus_tfidf)

sims = index[vec_tfidf]
similarit = list(sims)

#print(list(enumerate(sims)))
sims = sorted(enumerate(sims), key=lambda item: -item[1])
print(sims) #打印出相似度结果

def buss_mian():
while True:
test = raw_input("please input test:")
test_kk(test)

if __name__ == "__main__":

buss_mian()

欢迎指导学习交流!!!!!!!

gensim自然语言处理

标签:lte   class   .json   __iter__   五一   gen   input   put   打印   

原文地址:http://www.cnblogs.com/Edwardzhao/p/6866844.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!