码迷,mamicode.com
首页 > Web开发 > 详细

生成对抗网络资源 Adversarial Nets Papers

时间:2017-05-19 10:02:17      阅读:749      评论:0      收藏:0      [点我收藏+]

标签:ram   cot   back   air   cluster   eject   lease   dma   cts   

来源:https://github.com/zhangqianhui/AdversarialNetsPapers

AdversarialNetsPapers

The classical Papers about adversarial nets

The First paper

? [Generative Adversarial Nets] [Paper] [Code](the first paper about it)

Unclassified

? [Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks] [Paper][Code]

? [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks] [Paper][Code](Gan with convolutional networks)(ICLR)

? [Adversarial Autoencoders] [Paper][Code]

? [Generating Images with Perceptual Similarity Metrics based on Deep Networks] [Paper]

? [Generating images with recurrent adversarial networks] [Paper][Code]

? [Generative Visual Manipulation on the Natural Image Manifold] [Paper][Code]

? [Generative Adversarial Text to Image Synthesis] [Paper][Code][code]

? [Learning What and Where to Draw] [Paper][Code]

? [Adversarial Training for Sketch Retrieval] [Paper]

? [Generative Image Modeling using Style and Structure Adversarial Networks] [Paper][Code]

? [Generative Adversarial Networks as Variational Training of Energy Based Models] [Paper](ICLR 2017)

? [Adversarial Training Methods for Semi-Supervised Text Classification] [Paper][Note]( Ian Goodfellow Paper)

? [Learning from Simulated and Unsupervised Images through Adversarial Training] [Paper][code](Apple paper)

? [Synthesizing the preferred inputs for neurons in neural networks via deep generator networks] [Paper][Code]

? [SalGAN: Visual Saliency Prediction with Generative Adversarial Networks] [Paper][Code]

? [Adversarial Feature Learning] [Paper]

Ensemble

? [AdaGAN: Boosting Generative Models] [Paper][[Code]](Google Brain)

Clustering

? [Unsupervised Learning Using Generative Adversarial Training And Clustering] [Paper][Code](ICLR) ? [Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks] [Paper](ICLR)

Image Inpainting

? [Semantic Image Inpainting with Perceptual and Contextual Losses] [Paper][Code]

? [Context Encoders: Feature Learning by Inpainting] [Paper][Code]

? [Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks] [Paper]

? [Generative face completion] [Paper][code](CVPR2017)

? [Globally and Locally Consistent Image Completion] [MainPAGE](SIGGRAPH 2017)

Joint Probability

? [Adversarially Learned Inference][Paper][Code]

Super-Resolution

? [Image super-resolution through deep learning ][Code](Just for face dataset)

? [Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network] [Paper][Code](Using Deep residual network)

? [EnhanceGAN] [Docs][[Code]]

Disocclusion

? [Robust LSTM-Autoencoders for Face De-Occlusion in the Wild] [Paper]

Semantic Segmentation

? [Semantic Segmentation using Adversarial Networks] [Paper](soumith‘s paper)

Object Detection

? [Perceptual generative adversarial networks for small object detection] [[Paper]](Submitted)

? [A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection] [Paper][code](CVPR2017)

RNN

? [C-RNN-GAN: Continuous recurrent neural networks with adversarial training] [Paper][Code]

Conditional adversarial

? [Conditional Generative Adversarial Nets] [Paper][Code]

? [InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets] [Paper][Code]

? [Conditional Image Synthesis With Auxiliary Classifier GANs] [Paper][Code](GoogleBrain ICLR 2017)

? [Pixel-Level Domain Transfer] [Paper][Code]

? [Invertible Conditional GANs for image editing] [Paper][Code]

? [Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space] [Paper][Code]

? [StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] [Paper][Code]

Video Prediction

? [Deep multi-scale video prediction beyond mean square error] [Paper][Code](Yann LeCun‘s paper)

? [Unsupervised Learning for Physical Interaction through Video Prediction] [Paper](Ian Goodfellow‘s paper)

? [Generating Videos with Scene Dynamics] [Paper][Web][Code]

Texture Synthesis & style transfer

? [Precomputed real-time texture synthesis with markovian generative adversarial networks] [Paper][Code](ECCV 2016)

Image translation

? [UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION] [Paper][Code]

? [Image-to-image translation using conditional adversarial nets] [Paper][Code][Code]

? [Learning to Discover Cross-Domain Relations with Generative Adversarial Networks] [Paper][Code]

? [Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks] [Paper][Code]

? [Unsupervised Image-to-Image Translation with Generative Adversarial Networks] [Paper]

? [Unsupervised Image-to-Image Translation Networks] [Paper]

GAN Theory

? [Energy-based generative adversarial network] [Paper][Code](Lecun paper)

? [Improved Techniques for Training GANs] [Paper][Code](Goodfellow‘s paper)

? [Mode Regularized Generative Adversarial Networks] [Paper](Yoshua Bengio , ICLR 2017)

? [Improving Generative Adversarial Networks with Denoising Feature Matching] [Paper][Code](Yoshua Bengio , ICLR 2017)

? [Sampling Generative Networks] [Paper][Code]

? [Mode Regularized Generative Adversarial Networkss] [Paper]( Yoshua Bengio‘s paper)

? [How to train Gans] [Docu]

? [Towards Principled Methods for Training Generative Adversarial Networks] [Paper](ICLR 2017)

? [Unrolled Generative Adversarial Networks] [Paper][Code](ICLR 2017)

? [Least Squares Generative Adversarial Networks] [Paper][Code]

? [Wasserstein GAN] [Paper][Code]

? [Improved Training of Wasserstein GANs] [Paper][Code](The improve of wgan)

? [Towards Principled Methods for Training Generative Adversarial Networks] [Paper]

3D

? [Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling] [Paper][Web][code](2016 NIPS)

MUSIC

? [MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation using 1D and 2D Conditions] [Paper][HOMEPAGE]

Face Generative and Editing

? [Autoencoding beyond pixels using a learned similarity metric] [Paper][code]

? [Coupled Generative Adversarial Networks] [Paper][Caffe Code][Tensorflow Code](NIPS)

? [Invertible Conditional GANs for image editing] [Paper][Code]

? [Learning Residual Images for Face Attribute Manipulation] [Paper]

? [Neural Photo Editing with Introspective Adversarial Networks] [Paper][Code](ICLR 2017)

For discrete distributions

? [Maximum-Likelihood Augmented Discrete Generative Adversarial Networks] [Paper]

? [Boundary-Seeking Generative Adversarial Networks] [Paper]

? [GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution] [Paper]

Adversarial Examples

? [SafetyNet: Detecting and Rejecting Adversarial Examples Robustly] [Paper]

Project

? [cleverhans] [Code](A library for benchmarking vulnerability to adversarial examples)

? [reset-cppn-gan-tensorflow] [Code](Using Residual Generative Adversarial Networks and Variational Auto-encoder techniques to produce high resolution images)

? [HyperGAN] [Code](Open source GAN focused on scale and usability)

Blogs

AuthorAddress
inFERENCe Adversarial network
inFERENCe InfoGan
distill Deconvolution and Image Generation
yingzhenli Gan theory
OpenAI Generative model

Other

? [1] http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf (NIPS Goodfellow Slides)[Chinese Trans][details]

? [2] [PDF](NIPS Lecun Slides)

生成对抗网络资源 Adversarial Nets Papers

标签:ram   cot   back   air   cluster   eject   lease   dma   cts   

原文地址:http://www.cnblogs.com/skykill/p/6876508.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!