标签:io多路复用 实例 同步 知识 9.png threading 信号 异常 行数据
一、I/O模型
IO在计算机中指Input/Output,也就是输入和输出。由于程序和运行时数据是在内存中驻留,由CPU这个超快的计算核心来执行,涉及到数据交换的地方,通常是磁盘、网络等,就需要IO接口。
同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?
这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous IO和non-blocking IO是一个东西。这其实是因为不同的人的知识背景不同,并且在讨论这个问题的时候上下文(context)也不相同。所以,为了更好的回答这个问题,先限定一下本文的上下文。
本文讨论的背景是Linux环境下的network IO。
Stevens在文章中一共比较了五种IO Model:
由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。
再说一下IO发生时涉及的对象和步骤。
对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:
记住这两点很重要,因为这些IO Model的区别就是在两个阶段上各有不同的情况。
二、 blocking IO
在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:
当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network IO来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
所以,blocking IO的特点就是在IO执行的两个阶段都被block了。
三、non-blocking IO
linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:
从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。所以,用户进程其实是需要不断的主动询问kernel数据好了没有。
注意:
在网络IO时候,非阻塞IO也会进行recvform系统调用,检查数据是否准备好,与阻塞IO不一样,”非阻塞将大的整片时间的阻塞分成N多的小的阻塞, 所以进程不断地有机会 ‘被’ CPU光顾”。即每次recvform系统调用之间,cpu的权限还在进程手中,这段时间是可以做其他事情的,也就是说非阻塞的recvform系统调用之后,进程并没有被阻塞,内核马上返回给进程,如果数据还没准备好,此时会返回一个error。进程在返回之后,可以干点别的事情,然后再发起recvform系统调用。重复上面的过程,循环往复的进行recvform系统调用。这个过程通常被称之为轮询。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。需要注意,拷贝数据整个过程,进程仍然是属于阻塞的状态。
import time import socket sk = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sk.bind((‘127.0.0.1‘, 8080)) sk.listen(5) sk.setblocking(False) #设置套接字为非阻塞模式 while True: try: print(‘waiting client connection .......‘) connection, address = sk.accept() # 进程主动轮询 print("+++", address) client_messge = connection.recv(1024) print(str(client_messge, ‘utf8‘)) connection.close() except Exception as e: print(e) time.sleep(4) #############################client import time import socket sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM) while True: sk.connect((‘127.0.0.1‘, 8080)) print("hello") sk.sendall(bytes("hello", "utf8")) time.sleep(2) break 实例
以上实例,服务段端每隔4秒轮询一次,若没有任何客户端链接,则会抛出错误信息,并继续轮询。
非阻塞IO:
优点:能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在同时执行)。
四、IO multiplexing
IO multiplexing这个词可能有点陌生,有些地方也称这种IO方式为event driven IO。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:
当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
这个图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking IO只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。(多说一句。所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接)
在IO multiplexing Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。
注意:
import select, socket sock = socket.socket() sock.bind((‘127.0.0.1‘, 8080)) sock.listen(5) sock.setblocking(False) listen_obj = [sock, ] while True: r, w, e = select.select(listen_obj, [], []) for obj in r: if obj == sock: conn, addr = obj.accept() print(‘conn‘, conn) print(‘addr‘, addr) listen_obj.append(conn) else: data = obj.recv(1024) print(data.decode(‘utf8‘)) send_data = input(‘>>>‘) obj.send(send_data.encode(‘utf8‘)) #############################client import socket sock = socket.socket() sock.connect((‘127.0.0.1‘, 8080)) while True: data = input(‘>>>‘) sock.send(data.encode(‘utf8‘)) recv_data = sock.recv(1024) print(recv_data.decode(‘utf8‘)) sock.close() 实例
以上实例,服务端kernel监听select负责的listen_obj中的所有socket对象。当任何一个socket对象激活,根据其类型判断是否建立通信。
五、asynchronous I/O
linux下的asynchronous IO其实用得很少。先看一下它的流程:
用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它收到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。
很明显,使用异步IO来编写程序性能会远远高于同步IO,但是异步IO的缺点是编程模型复杂。
六、IO模型比较
到目前为止,已经将四个IO Model都介绍完了。现在回过头来回答最初的那几个问题:blocking和non-blocking的区别在哪,synchronous IO和asynchronous IO的区别在哪。
先回答最简单的这个:blocking vs non-blocking。前面的介绍中其实已经很明确的说明了这两者的区别。调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。
在说明synchronous IO和asynchronous IO的区别之前,需要先给出两者的定义。Stevens给出的定义(其实是POSIX的定义)是这样子的:
两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,之前所述的blocking IO,non-blocking IO,IO multiplexing都属于synchronous IO。有人可能会说,non-blocking IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。
各个IO Model的比较如图所示:
经过上面的介绍,会发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。
七、selectors模块
This module allows high-level and efficient I/O multiplexing, built upon the select
module primitives. Users are encouraged to use this module instead, unless they want precise control over the OS-level primitives used.
selectors是对select的封装,能够高效实现I/O复用,推荐使用!
import selectors import socket sock = socket.socket() sock.bind((‘127.0.0.1‘, 8080)) sock.listen(5) sel = selectors.DefaultSelector() # 根据具体平台选择最佳IO多路复用机制;linux:epoll(epoll|kqueue|devpoll > poll > select) def read(conn, mask): try: # 客户端终止,捕获异常并将其从监听列表中移除 data = conn.recv(1024) print(data.decode(‘utf8‘)) re_data = input(‘>>>‘) conn.send(re_data.encode(‘utf8‘)) except Exception: sel.unregister(conn) # 解除事件注册 def accept(sock, mask): conn, addr = sock.accept() sel.register(conn, selectors.EVENT_READ, read) # 注册事件,若conn触发,执行read函数 sel.register(sock, selectors.EVENT_READ, accept) # 注册事件,若sock触发,执行accept函数 while True: print(‘wating...‘) events = sel.select() # 监听 for key, mask in events: func = key.data # 包含accept和read函数 obj = key.fileobj # 包含sock和conn func(obj, mask) # accept(sock, mask);read(conn, mask) 服务端
import socket sock = socket.socket() sock.connect((‘127.0.0.1‘, 8080)) while True: data = input(‘>>>‘) sock.send(data.encode(‘utf8‘)) recv_data = sock.recv(1024) print(recv_data.decode(‘utf8‘)) sock.close() 客户端
好了,到这里关于网络编程的知识也就要告一段落了。
标签:io多路复用 实例 同步 知识 9.png threading 信号 异常 行数据
原文地址:http://www.cnblogs.com/haishiniu123/p/6882452.html