码迷,mamicode.com
首页 > 编程语言 > 详细

树状数组

时间:2017-05-25 19:05:34      阅读:223      评论:0      收藏:0      [点我收藏+]

标签:upload   pre   lin   最坏情况   等价   编号   证明   cli   第一个   

树状数组(Binary Indexed Tree(BIT), Fenwick Tree) 是一个查询和修改的复杂度都为 log(n) 的数据结构。

观察下图:

技术分享

令这棵树的结点编号为 C?1??,C?2??,,C?n??。令每个结点的值为这棵树的值的总和,那么容易发现:

C?1??=A?1??

C?2??=A?1??+A?2??

C?3??=A?3??

C?4??=A?1??+A?2??+A?3??+A?4??

C?5??=A?5??

C?6??=A?5??+A?6??

C?7??=A?7??

C?8??=A?1??+A?2??+A?3??+A?4??+A?5??+A?6??+A?7??+A?8??

C?16??=A?1??+A?2??+A?3??+A?4??+A?5??+A?6??+A?7??+A?8??+A?9??+A?10??+A?11??+A?12??+A?13??+A?14??+A?15??+A?16??

有一个有趣的性质:

设结点编号为 x,那么该结点区间为 2^k??(其中 k 为 x 二进制末尾 0 的个数)个元素。

因为这个区间最后一个元素必然为 A?x??,

所以很明显,技术分享

计算这个 2^k??,也就是最低位的 1,可以这样写:

 

int lowbit(int x) {
    return x & (x ^ (x – 1));
}
 

利用机器补码特性,也可以写成:

 
int lowbit(int x) {
    return x & -x;
}
 

查询

当想要查询一个 sum(1n) 即 (a?1??+a?2??++a?n??),可以依据如下算法即可:

step 1: 令 sum = 0,转第二步;

step 2: 假如 n0,算法结束,返回 sum 值,否则 sum = sum + Cn,转第三步;

step 3: 令 n = n - lowbit(n),转第二步。

可以看出,这个算法就是将这一个个区间的和全部加起来,为什么是效率是 log(n) 的呢?

证明:

n = n - lowbit(n)等价于将 n 的二进制的最后一个 1 减去。而 n 的二进制里最多有 og(n) 个 1,所以查询效率是 log(n) 的。

 
int getsum(int x) {
    int res = 0;
    for (; x; x -= x & (-x))
        res += t[x];
    return res;
}

 

修改

step 1:当 i > n 时,算法结束,否则转第二步;

step 2:Ci = Ci + x, i = i + lowbit(i) 转第一步。

i = i + lowbit(i) 这个过程实际上也只是一个把末尾 1 补为 0 的过程。

修改一个节点,必须修改其所有祖先,最坏情况下为修改第一个元素,最多有 log(n) 个祖先。

int change(int x) {
     for (; x <= maxn; x += x & (-x))
         t[x]++;
}

树状数组

标签:upload   pre   lin   最坏情况   等价   编号   证明   cli   第一个   

原文地址:http://www.cnblogs.com/wangkaipeng/p/6905288.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!