码迷,mamicode.com
首页 > 编程语言 > 详细

SVM算法的另外一种理解

时间:2017-05-25 23:31:27      阅读:263      评论:0      收藏:0      [点我收藏+]

标签:机器   bsp   正则   统计学习   ...   文章   目标   nbsp   max   

解决一个机器学习问题的一般套路是先构建一个目标函数,然后解决一个优化问题。目标函数通常由损失函数和正则项组成。常见的损失函数log-loss,square-loss,cross-entropy-loss等,常见的正则化方法有L1正则、L2正则等,常见的优化方法有梯度下降、随机梯度下降等。SVM也可以按照这种模式来重新定义。

首先,损失函数

\( l(y_i,y_i‘) = max(0,1-y_iy_i‘) \),称之为hinge-loss. 实际值y的取值为-1和1,容易看出,只要实际值和预测值不同,损失函数就会大于0,当实际值和预测值相同的时候,预测值的绝对值越大越好

然后,构建目标函数

obj(w,b) = \(\sum_{i=1}^{N}max(0,1-y_i(w \dot x_i+b)) + c||w||^2\)

可以证明

上述目标函数和上篇文章中得到的优化目标

\(min_{w,b}\frac{1}{2}||w||^2+C\sum_{i=1}^{N}\xi_i\)

s.t \(y_i(w\cdot x_i+b)>=1-\xi_i, i=1,2,...N\)

\(\xi_i>=0,i=1,2,3...N\)

等价

参考:李航《统计学习方法》

 

SVM算法的另外一种理解

标签:机器   bsp   正则   统计学习   ...   文章   目标   nbsp   max   

原文地址:http://www.cnblogs.com/naniJser/p/6892059.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!