标签:返回值 style read open pre plot otl pytho ascii
本次记录的几种截图对比方式,主要是为了在进行手机自动化测试时,通过截图对比来判断测试的正确性,方式如下:
# -*- coding: utf-8 -*- ‘‘‘ 用途:利用python实现多种方法来实现图像识别 author:SYW ‘‘‘ import cv2 import numpy as np from matplotlib import pyplot as plt # 最简单的以灰度直方图作为相似比较的实现 def classify_gray_hist(image1,image2,size = (256,256)): # 先计算直方图 # 几个参数必须用方括号括起来 # 这里直接用灰度图计算直方图,所以是使用第一个通道, # 也可以进行通道分离后,得到多个通道的直方图 # bins 取为16 image1 = cv2.resize(image1,size) image2 = cv2.resize(image2,size) hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0]) hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0]) # 可以比较下直方图 plt.plot(range(256),hist1,‘r‘) plt.plot(range(256),hist2,‘b‘) plt.show() # 计算直方图的重合度 degree = 0 for i in range(len(hist1)): if hist1[i] != hist2[i]: degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i])) else: degree = degree + 1 degree = degree/len(hist1) return degree # 计算单通道的直方图的相似值 def calculate(image1,image2): hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0]) hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0]) # 计算直方图的重合度 degree = 0 for i in range(len(hist1)): if hist1[i] != hist2[i]: degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i])) else: degree = degree + 1 degree = degree/len(hist1) return degree # 通过得到每个通道的直方图来计算相似度 def classify_hist_with_split(image1,image2,size = (256,256)): # 将图像resize后,分离为三个通道,再计算每个通道的相似值 image1 = cv2.resize(image1,size) image2 = cv2.resize(image2,size) sub_image1 = cv2.split(image1) sub_image2 = cv2.split(image2) sub_data = 0 for im1,im2 in zip(sub_image1,sub_image2): sub_data += calculate(im1,im2) sub_data = sub_data/3 return sub_data # 平均哈希算法计算 def classify_aHash(image1,image2): image1 = cv2.resize(image1,(8,8)) #cv2.resize(源,目标,变换方法),将图片变换成想要的尺寸 image2 = cv2.resize(image2,(8,8)) gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY) #cv2.cvtColor(input_image,flag)实现图片颜色空间的转换,flag 参数决定变换类型。如 BGR->Gray flag 就可以设置为 cv2.COLOR_BGR2GRAY 。 gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY) hash1 = getHash(gray1) hash2 = getHash(gray2) return Hamming_distance(hash1,hash2) def classify_pHash(image1,image2): image1 = cv2.resize(image1,(32,32)) image2 = cv2.resize(image2,(32,32)) gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY) # 将灰度图转为浮点型,再进行dct变换 dct1 = cv2.dct(np.float32(gray1)) dct2 = cv2.dct(np.float32(gray2)) # 取左上角的8*8,这些代表图片的最低频率 # 这个操作等价于c++中利用opencv实现的掩码操作 # 在python中进行掩码操作,可以直接这样取出图像矩阵的某一部分 dct1_roi = dct1[0:8,0:8] dct2_roi = dct2[0:8,0:8] hash1 = getHash(dct1_roi) hash2 = getHash(dct2_roi) return Hamming_distance(hash1,hash2) #输入灰度图,返回hash def getHash(image): avreage = np.mean(image) #np.mean()求取均值 hash = [] for i in range(image.shape[0]): for j in range(image.shape[1]): if image[i,j] > avreage: hash.append(1) else: hash.append(0) return hash # 计算汉明距离 def Hamming_distance(hash1,hash2): num = 0 for index in range(len(hash1)): if hash1[index] != hash2[index]: num += 1 return num #返回值越小,图片相似度越高 if __name__ == ‘__main__‘: img1 = cv2.imread(‘E:\\p1\\1.png‘,cv2.IMREAD_COLOR) #读入图片,共2个参数,第一个参数为要读入的图片文件名,第二个参数为如何读取图片,包括cv2.IMREAD_COLOR读入一幅彩色图片,cv2.IMREAD_UNCHANGED读入一幅彩色图片,并包括alpha通道,cv2.IMREAD_GRAYSCALE已灰度模式读入图片 img2 = cv2.imread(‘E:\\p2\\2.png‘,cv2.IMREAD_COLOR) c_img1 = img1[200:400, 500:800] #截取图片的某一部分 c_img2 = img2[200:400, 500:800] #syw,[200:400]控制的是高度,[500:800]控制的是长度,500代表的是x1,800代表的是x2 cv2.imshow(‘img1‘,c_img1) #创建一个窗口显示图片,共2个参数,第一个参数为”窗口显示图片的标题“可以创建多个窗口,但每个窗口都不能重名,第二个参数为读入的图片 cv2.imshow(‘img2‘,c_img2) #degree = classify_gray_hist(img1,img2) #degree = classify_hist_with_split(img1,img2) #degree = classify_pHash(img1,img2) #syw #degree = classify_pHash(c_img1,c_img2) degree = classify_aHash(c_img1,c_img2) print degree if degree == 0 or degree <10: print "pass" else: print "fail" cv2.waitKey(0) #键盘绑定函数。共一个函数,表示等待毫秒数,将等待特定的几毫秒,看键盘是否有输入,返回值是ASCII值,如果其参数为0,则表示无限期的等待键盘输入 cv2.destroyAllWindows() #删除建立的全部窗口 #cv2.destroyWindows(): #删除指定的窗口
标签:返回值 style read open pre plot otl pytho ascii
原文地址:http://www.cnblogs.com/syw20170419/p/6964339.html