标签:ati from 介绍 提取 rem arc 运行 over power
这里主要介绍nltk中的一些现成的词干提取器Porter和Lancaster.
1. Porter
>>> import nltk >>> porter=nltk.PorterStemmer() >>> raw=‘‘‘Listen, strange women lying in ponds distributing swords is no basis ... for a system of government. Supreme executive power derives from a mandate from ... the masses, not from some farcical aquatic‘‘‘ >>> tokens=nltk.word_tokenize(raw) >>> [porter.stem(t) for t in tokens] [‘listen‘, ‘,‘, u‘strang‘, ‘women‘, u‘lie‘, ‘in‘, u‘pond‘, u‘distribut‘, u‘sword‘, ‘is‘, ‘no‘, u‘basi‘, ‘for‘, ‘a‘, ‘system‘, ‘of‘, u‘govern‘, ‘.‘, u‘suprem‘, u‘execut‘, ‘power‘, u‘deriv‘, ‘from‘, , u‘mandat‘, ‘from‘, ‘the‘, u‘mass‘, ‘,‘, ‘not‘, ‘from‘, ‘some‘, u‘farcic‘, u‘aquat‘]
2. Lancaster
>>> lancaster=nltk.LancasterStemmer() >>> [lancaster.stem(t) for t in tokens] [‘list‘, ‘,‘, ‘strange‘, ‘wom‘, ‘lying‘, ‘in‘, ‘pond‘, ‘distribut‘, ‘sword‘, ‘is‘, ‘no‘, ‘bas‘, ‘for‘, ‘a‘, ‘system‘, ‘of‘, ‘govern‘, ‘.‘, ‘suprem‘, ‘execut‘, ‘pow‘, ‘der‘, ‘from‘, ‘a‘, ‘mand‘, ‘from‘ , ‘the‘, ‘mass‘, ‘,‘, ‘not‘, ‘from‘, ‘som‘, ‘farc‘, ‘aqu‘]
3. 词形归并器:删除词缀产生的词, 常用的有WordNetLemmatier
>>> wnl=nltk.WordNetLemmatizer() >>> [wnl.lemmatize(t) for t in tokens] [‘Listen‘, ‘,‘, ‘strange‘, u‘woman‘, ‘lying‘, ‘in‘, u‘pond‘, ‘distributing‘, u‘sword‘, ‘is‘, ‘no‘, ‘basis‘, ‘for‘, ‘a‘, ‘system‘, ‘of‘, ‘government‘, ‘.‘, ‘Supreme‘, ‘executive‘, ‘power‘, ‘derives‘, ‘ from‘, ‘a‘, ‘mandate‘, ‘from‘, ‘the‘, u‘mass‘, ‘,‘, ‘not‘, ‘from‘, ‘some‘, ‘farcical‘, ‘aquatic‘]
从上面的运行结果可以看出,Porter词干提取器的效果比较好。
标签:ati from 介绍 提取 rem arc 运行 over power
原文地址:http://www.cnblogs.com/no-tears-girl/p/6964910.html