码迷,mamicode.com
首页 > 编程语言 > 详细

综合运用: C++11 多线程下生产者消费者模型详解(转)

时间:2017-06-12 16:16:36      阅读:252      评论:0      收藏:0      [点我收藏+]

标签:while   错误   速度   返回   cer   情况   使用   oid   允许   

生产者消费者问题是多线程并发中一个非常经典的问题,相信学过操作系统课程的同学都清楚这个问题的根源。本文将就四种情况分析并介绍生产者和消费者问题,它们分别是:单生产者-单消费者模型,单生产者-多消费者模型,多生产者-单消费者模型,多生产者-多消费者模型,我会给出四种情况下的 C++11 并发解决方案,如果文中出现了错误或者你对代码有异议,欢迎交流 ;-)。

单生产者-单消费者模型

顾名思义,单生产者-单消费者模型中只有一个生产者和一个消费者,生产者不停地往产品库中放入产品,消费者则从产品库中取走产品,产品库容积有限制,只能容纳一定数目的产品,如果生产者生产产品的速度过快,则需要等待消费者取走产品之后,产品库不为空才能继续往产品库中放置新的产品,相反,如果消费者取走产品的速度过快,则可能面临产品库中没有产品可使用的情况,此时需要等待生产者放入一个产品后,消费者才能继续工作。C++11实现单生产者单消费者模型的代码如下:

 1 #include <unistd.h>
 2 
 3 #include <cstdlib>
 4 #include <condition_variable>
 5 #include <iostream>
 6 #include <mutex>
 7 #include <thread>
 8 
 9 static const int kItemRepositorySize  = 10; // Item buffer size.
10 static const int kItemsToProduce  = 1000;   // How many items we plan to produce.
11 
12 struct ItemRepository {
13     int item_buffer[kItemRepositorySize]; // 产品缓冲区, 配合 read_position 和 write_position 模型环形队列.
14     size_t read_position; // 消费者读取产品位置.
15     size_t write_position; // 生产者写入产品位置.
16     std::mutex mtx; // 互斥量,保护产品缓冲区
17     std::condition_variable repo_not_full; // 条件变量, 指示产品缓冲区不为满.
18     std::condition_variable repo_not_empty; // 条件变量, 指示产品缓冲区不为空.
19 } gItemRepository; // 产品库全局变量, 生产者和消费者操作该变量.
20 
21 typedef struct ItemRepository ItemRepository;
22 
23 
24 void ProduceItem(ItemRepository *ir, int item)
25 {
26     std::unique_lock<std::mutex> lock(ir->mtx);
27     while(((ir->write_position + 1) % kItemRepositorySize)
28         == ir->read_position) { // item buffer is full, just wait here.
29         std::cout << "Producer is waiting for an empty slot...\n";
30         (ir->repo_not_full).wait(lock); // 生产者等待"产品库缓冲区不为满"这一条件发生.
31     }
32 
33     (ir->item_buffer)[ir->write_position] = item; // 写入产品.
34     (ir->write_position)++; // 写入位置后移.
35 
36     if (ir->write_position == kItemRepositorySize) // 写入位置若是在队列最后则重新设置为初始位置.
37         ir->write_position = 0;
38 
39     (ir->repo_not_empty).notify_all(); // 通知消费者产品库不为空.
40     lock.unlock(); // 解锁.
41 }
42 
43 int ConsumeItem(ItemRepository *ir)
44 {
45     int data;
46     std::unique_lock<std::mutex> lock(ir->mtx);
47     // item buffer is empty, just wait here.
48     while(ir->write_position == ir->read_position) {
49         std::cout << "Consumer is waiting for items...\n";
50         (ir->repo_not_empty).wait(lock); // 消费者等待"产品库缓冲区不为空"这一条件发生.
51     }
52 
53     data = (ir->item_buffer)[ir->read_position]; // 读取某一产品
54     (ir->read_position)++; // 读取位置后移
55 
56     if (ir->read_position >= kItemRepositorySize) // 读取位置若移到最后,则重新置位.
57         ir->read_position = 0;
58 
59     (ir->repo_not_full).notify_all(); // 通知消费者产品库不为满.
60     lock.unlock(); // 解锁.
61 
62     return data; // 返回产品.
63 }
64 
65 
66 void ProducerTask() // 生产者任务
67 {
68     for (int i = 1; i <= kItemsToProduce; ++i) {
69         // sleep(1);
70         std::cout << "Produce the " << i << "^th item..." << std::endl;
71         ProduceItem(&gItemRepository, i); // 循环生产 kItemsToProduce 个产品.
72     }
73 }
74 
75 void ConsumerTask() // 消费者任务
76 {
77     static int cnt = 0;
78     while(1) {
79         sleep(1);
80         int item = ConsumeItem(&gItemRepository); // 消费一个产品.
81         std::cout << "Consume the " << item << "^th item" << std::endl;
82         if (++cnt == kItemsToProduce) break; // 如果产品消费个数为 kItemsToProduce, 则退出.
83     }
84 }
85 
86 void InitItemRepository(ItemRepository *ir)
87 {
88     ir->write_position = 0; // 初始化产品写入位置.
89     ir->read_position = 0; // 初始化产品读取位置.
90 }
91 
92 int main()
93 {
94     InitItemRepository(&gItemRepository);
95     std::thread producer(ProducerTask); // 创建生产者线程.
96     std::thread consumer(ConsumerTask); // 创建消费之线程.
97     producer.join();
98     consumer.join();
99 }

 

 单生产者-多消费者模型

与单生产者和单消费者模型不同的是,单生产者-多消费者模型中可以允许多个消费者同时从产品库中取走产品。所以除了保护产品库在多个读写线程下互斥之外,还需要维护消费者取走产品的计数器,代码如下:

  1 #include <unistd.h>
  2 
  3 #include <cstdlib>
  4 #include <condition_variable>
  5 #include <iostream>
  6 #include <mutex>
  7 #include <thread>
  8 
  9 static const int kItemRepositorySize  = 4; // Item buffer size.
 10 static const int kItemsToProduce  = 10;   // How many items we plan to produce.
 11 
 12 struct ItemRepository {
 13     int item_buffer[kItemRepositorySize];
 14     size_t read_position;
 15     size_t write_position;
 16     size_t item_counter;
 17     std::mutex mtx;
 18     std::mutex item_counter_mtx;
 19     std::condition_variable repo_not_full;
 20     std::condition_variable repo_not_empty;
 21 } gItemRepository;
 22 
 23 typedef struct ItemRepository ItemRepository;
 24 
 25 
 26 void ProduceItem(ItemRepository *ir, int item)
 27 {
 28     std::unique_lock<std::mutex> lock(ir->mtx);
 29     while(((ir->write_position + 1) % kItemRepositorySize)
 30         == ir->read_position) { // item buffer is full, just wait here.
 31         std::cout << "Producer is waiting for an empty slot...\n";
 32         (ir->repo_not_full).wait(lock);
 33     }
 34 
 35     (ir->item_buffer)[ir->write_position] = item;
 36     (ir->write_position)++;
 37 
 38     if (ir->write_position == kItemRepositorySize)
 39         ir->write_position = 0;
 40 
 41     (ir->repo_not_empty).notify_all();
 42     lock.unlock();
 43 }
 44 
 45 int ConsumeItem(ItemRepository *ir)
 46 {
 47     int data;
 48     std::unique_lock<std::mutex> lock(ir->mtx);
 49     // item buffer is empty, just wait here.
 50     while(ir->write_position == ir->read_position) {
 51         std::cout << "Consumer is waiting for items...\n";
 52         (ir->repo_not_empty).wait(lock);
 53     }
 54 
 55     data = (ir->item_buffer)[ir->read_position];
 56     (ir->read_position)++;
 57 
 58     if (ir->read_position >= kItemRepositorySize)
 59         ir->read_position = 0;
 60 
 61     (ir->repo_not_full).notify_all();
 62     lock.unlock();
 63 
 64     return data;
 65 }
 66 
 67 
 68 void ProducerTask()
 69 {
 70     for (int i = 1; i <= kItemsToProduce; ++i) {
 71         // sleep(1);
 72         std::cout << "Producer thread " << std::this_thread::get_id()
 73             << " producing the " << i << "^th item..." << std::endl;
 74         ProduceItem(&gItemRepository, i);
 75     }
 76     std::cout << "Producer thread " << std::this_thread::get_id()
 77                 << " is exiting..." << std::endl;
 78 }
 79 
 80 void ConsumerTask()
 81 {
 82     bool ready_to_exit = false;
 83     while(1) {
 84         sleep(1);
 85         std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);
 86         if (gItemRepository.item_counter < kItemsToProduce) {
 87             int item = ConsumeItem(&gItemRepository);
 88             ++(gItemRepository.item_counter);
 89             std::cout << "Consumer thread " << std::this_thread::get_id()
 90                 << " is consuming the " << item << "^th item" << std::endl;
 91         } else ready_to_exit = true;
 92         lock.unlock();
 93         if (ready_to_exit == true) break;
 94     }
 95     std::cout << "Consumer thread " << std::this_thread::get_id()
 96                 << " is exiting..." << std::endl;
 97 }
 98 
 99 void InitItemRepository(ItemRepository *ir)
100 {
101     ir->write_position = 0;
102     ir->read_position = 0;
103     ir->item_counter = 0;
104 }
105 
106 int main()
107 {
108     InitItemRepository(&gItemRepository);
109     std::thread producer(ProducerTask);
110     std::thread consumer1(ConsumerTask);
111     std::thread consumer2(ConsumerTask);
112     std::thread consumer3(ConsumerTask);
113     std::thread consumer4(ConsumerTask);
114 
115     producer.join();
116     consumer1.join();
117     consumer2.join();
118     consumer3.join();
119     consumer4.join();
120 }

 

 多生产者-单消费者模型

与单生产者和单消费者模型不同的是,多生产者-单消费者模型中可以允许多个生产者同时向产品库中放入产品。所以除了保护产品库在多个读写线程下互斥之外,还需要维护生产者放入产品的计数器,代码如下:

  1 #include <unistd.h>
  2 
  3 #include <cstdlib>
  4 #include <condition_variable>
  5 #include <iostream>
  6 #include <mutex>
  7 #include <thread>
  8 
  9 static const int kItemRepositorySize  = 4; // Item buffer size.
 10 static const int kItemsToProduce  = 10;   // How many items we plan to produce.
 11 
 12 struct ItemRepository {
 13     int item_buffer[kItemRepositorySize];
 14     size_t read_position;
 15     size_t write_position;
 16     size_t item_counter;
 17     std::mutex mtx;
 18     std::mutex item_counter_mtx;
 19     std::condition_variable repo_not_full;
 20     std::condition_variable repo_not_empty;
 21 } gItemRepository;
 22 
 23 typedef struct ItemRepository ItemRepository;
 24 
 25 
 26 void ProduceItem(ItemRepository *ir, int item)
 27 {
 28     std::unique_lock<std::mutex> lock(ir->mtx);
 29     while(((ir->write_position + 1) % kItemRepositorySize)
 30         == ir->read_position) { // item buffer is full, just wait here.
 31         std::cout << "Producer is waiting for an empty slot...\n";
 32         (ir->repo_not_full).wait(lock);
 33     }
 34 
 35     (ir->item_buffer)[ir->write_position] = item;
 36     (ir->write_position)++;
 37 
 38     if (ir->write_position == kItemRepositorySize)
 39         ir->write_position = 0;
 40 
 41     (ir->repo_not_empty).notify_all();
 42     lock.unlock();
 43 }
 44 
 45 int ConsumeItem(ItemRepository *ir)
 46 {
 47     int data;
 48     std::unique_lock<std::mutex> lock(ir->mtx);
 49     // item buffer is empty, just wait here.
 50     while(ir->write_position == ir->read_position) {
 51         std::cout << "Consumer is waiting for items...\n";
 52         (ir->repo_not_empty).wait(lock);
 53     }
 54 
 55     data = (ir->item_buffer)[ir->read_position];
 56     (ir->read_position)++;
 57 
 58     if (ir->read_position >= kItemRepositorySize)
 59         ir->read_position = 0;
 60 
 61     (ir->repo_not_full).notify_all();
 62     lock.unlock();
 63 
 64     return data;
 65 }
 66 
 67 void ProducerTask()
 68 {
 69     bool ready_to_exit = false;
 70     while(1) {
 71         sleep(1);
 72         std::unique_lock<std::mutex> lock(gItemRepository.item_counter_mtx);
 73         if (gItemRepository.item_counter < kItemsToProduce) {
 74             ++(gItemRepository.item_counter);
 75             ProduceItem(&gItemRepository, gItemRepository.item_counter);
 76             std::cout << "Producer thread " << std::this_thread::get_id()
 77                 << " is producing the " << gItemRepository.item_counter
 78                 << "^th item" << std::endl;
 79         } else ready_to_exit = true;
 80         lock.unlock();
 81         if (ready_to_exit == true) break;
 82     }
 83     std::cout << "Producer thread " << std::this_thread::get_id()
 84                 << " is exiting..." << std::endl;
 85 }
 86 
 87 void ConsumerTask()
 88 {
 89     static int item_consumed = 0;
 90     while(1) {
 91         sleep(1);
 92         ++item_consumed;
 93         if (item_consumed <= kItemsToProduce) {
 94             int item = ConsumeItem(&gItemRepository);
 95             std::cout << "Consumer thread " << std::this_thread::get_id()
 96                 << " is consuming the " << item << "^th item" << std::endl;
 97         } else break;
 98     }
 99     std::cout << "Consumer thread " << std::this_thread::get_id()
100                 << " is exiting..." << std::endl;
101 }
102 
103 void InitItemRepository(ItemRepository *ir)
104 {
105     ir->write_position = 0;
106     ir->read_position = 0;
107     ir->item_counter = 0;
108 }
109 
110 int main()
111 {
112     InitItemRepository(&gItemRepository);
113     std::thread producer1(ProducerTask);
114     std::thread producer2(ProducerTask);
115     std::thread producer3(ProducerTask);
116     std::thread producer4(ProducerTask);
117     std::thread consumer(ConsumerTask);
118 
119     producer1.join();
120     producer2.join();
121     producer3.join();
122     producer4.join();
123     consumer.join();
124 }

 

多生产者-多消费者模型

该模型可以说是前面两种模型的综合,程序需要维护两个计数器,分别是生产者已生产产品的数目和消费者已取走产品的数目。另外也需要保护产品库在多个生产者和多个消费者互斥地访问。

代码如下:

  1 #include <unistd.h>
  2 
  3 #include <cstdlib>
  4 #include <condition_variable>
  5 #include <iostream>
  6 #include <mutex>
  7 #include <thread>
  8 
  9 static const int kItemRepositorySize  = 4; // Item buffer size.
 10 static const int kItemsToProduce  = 10;   // How many items we plan to produce.
 11 
 12 struct ItemRepository {
 13     int item_buffer[kItemRepositorySize];
 14     size_t read_position;
 15     size_t write_position;
 16     size_t produced_item_counter;
 17     size_t consumed_item_counter;
 18     std::mutex mtx;
 19     std::mutex produced_item_counter_mtx;
 20     std::mutex consumed_item_counter_mtx;
 21     std::condition_variable repo_not_full;
 22     std::condition_variable repo_not_empty;
 23 } gItemRepository;
 24 
 25 typedef struct ItemRepository ItemRepository;
 26 
 27 
 28 void ProduceItem(ItemRepository *ir, int item)
 29 {
 30     std::unique_lock<std::mutex> lock(ir->mtx);
 31     while(((ir->write_position + 1) % kItemRepositorySize)
 32         == ir->read_position) { // item buffer is full, just wait here.
 33         std::cout << "Producer is waiting for an empty slot...\n";
 34         (ir->repo_not_full).wait(lock);
 35     }
 36 
 37     (ir->item_buffer)[ir->write_position] = item;
 38     (ir->write_position)++;
 39 
 40     if (ir->write_position == kItemRepositorySize)
 41         ir->write_position = 0;
 42 
 43     (ir->repo_not_empty).notify_all();
 44     lock.unlock();
 45 }
 46 
 47 int ConsumeItem(ItemRepository *ir)
 48 {
 49     int data;
 50     std::unique_lock<std::mutex> lock(ir->mtx);
 51     // item buffer is empty, just wait here.
 52     while(ir->write_position == ir->read_position) {
 53         std::cout << "Consumer is waiting for items...\n";
 54         (ir->repo_not_empty).wait(lock);
 55     }
 56 
 57     data = (ir->item_buffer)[ir->read_position];
 58     (ir->read_position)++;
 59 
 60     if (ir->read_position >= kItemRepositorySize)
 61         ir->read_position = 0;
 62 
 63     (ir->repo_not_full).notify_all();
 64     lock.unlock();
 65 
 66     return data;
 67 }
 68 
 69 void ProducerTask()
 70 {
 71     bool ready_to_exit = false;
 72     while(1) {
 73         sleep(1);
 74         std::unique_lock<std::mutex> lock(gItemRepository.produced_item_counter_mtx);
 75         if (gItemRepository.produced_item_counter < kItemsToProduce) {
 76             ++(gItemRepository.produced_item_counter);
 77             ProduceItem(&gItemRepository, gItemRepository.produced_item_counter);
 78             std::cout << "Producer thread " << std::this_thread::get_id()
 79                 << " is producing the " << gItemRepository.produced_item_counter
 80                 << "^th item" << std::endl;
 81         } else ready_to_exit = true;
 82         lock.unlock();
 83         if (ready_to_exit == true) break;
 84     }
 85     std::cout << "Producer thread " << std::this_thread::get_id()
 86                 << " is exiting..." << std::endl;
 87 }
 88 
 89 void ConsumerTask()
 90 {
 91     bool ready_to_exit = false;
 92     while(1) {
 93         sleep(1);
 94         std::unique_lock<std::mutex> lock(gItemRepository.consumed_item_counter_mtx);
 95         if (gItemRepository.consumed_item_counter < kItemsToProduce) {
 96             int item = ConsumeItem(&gItemRepository);
 97             ++(gItemRepository.consumed_item_counter);
 98             std::cout << "Consumer thread " << std::this_thread::get_id()
 99                 << " is consuming the " << item << "^th item" << std::endl;
100         } else ready_to_exit = true;
101         lock.unlock();
102         if (ready_to_exit == true) break;
103     }
104     std::cout << "Consumer thread " << std::this_thread::get_id()
105                 << " is exiting..." << std::endl;
106 }
107 
108 void InitItemRepository(ItemRepository *ir)
109 {
110     ir->write_position = 0;
111     ir->read_position = 0;
112     ir->produced_item_counter = 0;
113     ir->consumed_item_counter = 0;
114 }
115 
116 int main()
117 {
118     InitItemRepository(&gItemRepository);
119     std::thread producer1(ProducerTask);
120     std::thread producer2(ProducerTask);
121     std::thread producer3(ProducerTask);
122     std::thread producer4(ProducerTask);
123 
124     std::thread consumer1(ConsumerTask);
125     std::thread consumer2(ConsumerTask);
126     std::thread consumer3(ConsumerTask);
127     std::thread consumer4(ConsumerTask);
128 
129     producer1.join();
130     producer2.join();
131     producer3.join();
132     producer4.join();
133 
134     consumer1.join();
135     consumer2.join();
136     consumer3.join();
137     consumer4.join();
138 }

 

综合运用: C++11 多线程下生产者消费者模型详解(转)

标签:while   错误   速度   返回   cer   情况   使用   oid   允许   

原文地址:http://www.cnblogs.com/zl1991/p/6993225.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!