标签:div gradient adr sign dai dex wfs sort ctr
https://www.kaggle.com/startupsci/titanic-data-science-solutions
https://www.kaggle.com/c/titanic
# data analysis and wrangling 数据分析和清洗工具
import pandas as pd
import numpy as np
import random as rnd
# visualization 数据可视化工具
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
# machine learning 机器学习模型
from sklearn.linear_model import LogisticRegression # 逻辑回归
from sklearn.svm import SVC, LinearSVC # 支持向量机
from sklearn.ensemble import RandomForestClassifier # 随机森林
from sklearn.neighbors import KNeighborsClassifier # K近邻
from sklearn.naive_bayes import GaussianNB # 贝叶斯算法
from sklearn.linear_model import Perceptron # 感知机
from sklearn.linear_model import SGDClassifier # 随机梯度下降分类器
from sklearn.tree import DecisionTreeClassifier # 决策树
train_df = pd.read_csv(‘data/train.csv‘) # 用pandas的read_csv方法读出DataFrame数据
test_df = pd.read_csv(‘data/test.csv‘)
combine = [train_df, test_df] # combine为一个数据集,方便对训练集和测试集做相同的数据清洗操作
print(train_df.columns.values) # 导出列名:features的名字
# preview the data
train_df.head() # 默认前5行
train_df.tail() # 默认后5行
train_df.info()
print(‘_‘*40)
test_df.info()
train_df.describe() # 数据的描述(总数、均值、标准差、最大、最小、25%、50%、75%)
# Review survived rate using `percentiles=[.61, .62]` knowing our problem description mentions 38% survival rate.
# Review Parch distribution using `percentiles=[.75, .8]`
# SibSp distribution `[.68, .69]`
# Age and Fare `[.1, .2, .3, .4, .5, .6, .7, .8, .9, .99]`
train_df.describe(include=[‘O‘]) # 找出特征中几个出现的不同值和频率最高
Correlating
Completing
Correcting
Creating
Classifying
# 通过groupby找出该特征与目标之间的关联
train_df[[‘Pclass‘, ‘Survived‘]].groupby([‘Pclass‘], as_index=False).mean().sort_values(by=‘Survived‘, ascending=False)
train_df[["Sex", "Survived"]].groupby([‘Sex‘], as_index=False).mean().sort_values(by=‘Survived‘, ascending=False)
train_df[["SibSp", "Survived"]].groupby([‘SibSp‘], as_index=False).mean().sort_values(by=‘Survived‘, ascending=False)
train_df[["Parch", "Survived"]].groupby([‘Parch‘], as_index=False).mean().sort_values(by=‘Survived‘, ascending=False)
g = sns.FacetGrid(train_df, col=‘Survived‘)
g.map(plt.hist, ‘Age‘, bins=20)
# grid = sns.FacetGrid(train_df, col=‘Pclass‘, hue=‘Survived‘)
grid = sns.FacetGrid(train_df, col=‘Survived‘, row=‘Pclass‘, size=2.2, aspect=1.6)
grid.map(plt.hist, ‘Age‘, alpha=.5, bins=20)
grid.add_legend();
# grid = sns.FacetGrid(train_df, col=‘Embarked‘)
grid = sns.FacetGrid(train_df, row=‘Embarked‘, size=2.2, aspect=1.6)
grid.map(sns.pointplot, ‘Pclass‘, ‘Survived‘, ‘Sex‘, palette=‘deep‘)
grid.add_legend()
# grid = sns.FacetGrid(train_df, col=‘Embarked‘, hue=‘Survived‘, palette={0: ‘k‘, 1: ‘w‘})
grid = sns.FacetGrid(train_df, row=‘Embarked‘, col=‘Survived‘, size=2.2, aspect=1.6)
grid.map(sns.barplot, ‘Sex‘, ‘Fare‘, alpha=.5, ci=None)
grid.add_legend()
Correcting by dropping features
drop the Cabin (correcting #2) and Ticket (correcting #1) features
print("Before", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape)
train_df = train_df.drop([‘Ticket‘, ‘Cabin‘], axis=1)
test_df = test_df.drop([‘Ticket‘, ‘Cabin‘], axis=1)
combine = [train_df, test_df]
print("After", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape)
Creating new feature extracting from existing
for dataset in combine:
dataset[‘Title‘] = dataset.Name.str.extract(‘ ([A-Za-z]+)\.‘, expand=False)
pd.crosstab(train_df[‘Title‘], train_df[‘Sex‘])
for dataset in combine:
dataset[‘Title‘] = dataset[‘Title‘].replace([‘Lady‘, ‘Countess‘,‘Capt‘, ‘Col‘, ‘Don‘, ‘Dr‘, ‘Major‘, ‘Rev‘, ‘Sir‘, ‘Jonkheer‘, ‘Dona‘], ‘Rare‘)
dataset[‘Title‘] = dataset[‘Title‘].replace(‘Mlle‘, ‘Miss‘)
dataset[‘Title‘] = dataset[‘Title‘].replace(‘Ms‘, ‘Miss‘)
dataset[‘Title‘] = dataset[‘Title‘].replace(‘Mme‘, ‘Mrs‘)
train_df[[‘Title‘, ‘Survived‘]].groupby([‘Title‘], as_index=False).mean()
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
for dataset in combine:
dataset[‘Title‘] = dataset[‘Title‘].map(title_mapping)
dataset[‘Title‘] = dataset[‘Title‘].fillna(0)
train_df.head()
train_df = train_df.drop([‘Name‘, ‘PassengerId‘], axis=1)
test_df = test_df.drop([‘Name‘], axis=1)
combine = [train_df, test_df]
train_df.shape, test_df.shape
for dataset in combine:
dataset[‘Sex‘] = dataset[‘Sex‘].map( {‘female‘: 1, ‘male‘: 0} ).astype(int)
train_df.head()
# grid = sns.FacetGrid(train_df, col=‘Pclass‘, hue=‘Gender‘)
grid = sns.FacetGrid(train_df, row=‘Pclass‘, col=‘Sex‘, size=2.2, aspect=1.6)
grid.map(plt.hist, ‘Age‘, alpha=.5, bins=20)
grid.add_legend()
guess_ages = np.zeros((2,3))
guess_ages
for dataset in combine:
for i in range(0, 2):
for j in range(0, 3):
guess_df = dataset[(dataset[‘Sex‘] == i) & (dataset[‘Pclass‘] == j+1)][‘Age‘].dropna()
# age_mean = guess_df.mean()
# age_std = guess_df.std()
# age_guess = rnd.uniform(age_mean - age_std, age_mean + age_std)
age_guess = guess_df.median()
# Convert random age float to nearest .5 age
guess_ages[i,j] = int( age_guess/0.5 + 0.5 ) * 0.5
for i in range(0, 2):
for j in range(0, 3):
dataset.loc[ (dataset.Age.isnull()) & (dataset.Sex == i) & (dataset.Pclass == j+1), ‘Age‘] = guess_ages[i,j]
dataset[‘Age‘] = dataset[‘Age‘].astype(int)
train_df.head()
train_df[‘AgeBand‘] = pd.cut(train_df[‘Age‘], 5)
train_df[[‘AgeBand‘, ‘Survived‘]].groupby([‘AgeBand‘], as_index=False).mean().sort_values(by=‘AgeBand‘, ascending=True)
for dataset in combine:
dataset.loc[ dataset[‘Age‘] <= 16, ‘Age‘] = 0
dataset.loc[(dataset[‘Age‘] > 16) & (dataset[‘Age‘] <= 32), ‘Age‘] = 1
dataset.loc[(dataset[‘Age‘] > 32) & (dataset[‘Age‘] <= 48), ‘Age‘] = 2
dataset.loc[(dataset[‘Age‘] > 48) & (dataset[‘Age‘] <= 64), ‘Age‘] = 3
dataset.loc[ dataset[‘Age‘] > 64, ‘Age‘]
train_df.head()
train_df = train_df.drop([‘AgeBand‘], axis=1)
combine = [train_df, test_df]
train_df.head()
for dataset in combine:
dataset[‘FamilySize‘] = dataset[‘SibSp‘] + dataset[‘Parch‘] + 1
train_df[[‘FamilySize‘, ‘Survived‘]].groupby([‘FamilySize‘], as_index=False).mean().sort_values(by=‘Survived‘, ascending=False)
for dataset in combine:
dataset[‘IsAlone‘] = 0
dataset.loc[dataset[‘FamilySize‘] == 1, ‘IsAlone‘] = 1
train_df[[‘IsAlone‘, ‘Survived‘]].groupby([‘IsAlone‘], as_index=False).mean()
train_df = train_df.drop([‘Parch‘, ‘SibSp‘, ‘FamilySize‘], axis=1)
test_df = test_df.drop([‘Parch‘, ‘SibSp‘, ‘FamilySize‘], axis=1)
combine = [train_df, test_df]
train_df.head()
for dataset in combine:
dataset[‘Age*Class‘] = dataset.Age * dataset.Pclass
train_df.loc[:, [‘Age*Class‘, ‘Age‘, ‘Pclass‘]].head(10)
freq_port = train_df.Embarked.dropna().mode()[0]
freq_port
for dataset in combine:
dataset[‘Embarked‘] = dataset[‘Embarked‘].fillna(freq_port)
train_df[[‘Embarked‘, ‘Survived‘]].groupby([‘Embarked‘], as_index=False).mean().sort_values(by=‘Survived‘, ascending=False)
for dataset in combine:
dataset[‘Embarked‘] = dataset[‘Embarked‘].map( {‘S‘: 0, ‘C‘: 1, ‘Q‘: 2} ).astype(int)
train_df.head()
test_df[‘Fare‘].fillna(test_df[‘Fare‘].dropna().median(), inplace=True)
test_df.head()
train_df[‘FareBand‘] = pd.qcut(train_df[‘Fare‘], 4)
train_df[[‘FareBand‘, ‘Survived‘]].groupby([‘FareBand‘], as_index=False).mean().sort_values(by=‘FareBand‘, ascending=True)
for dataset in combine:
dataset.loc[ dataset[‘Fare‘] <= 7.91, ‘Fare‘] = 0
dataset.loc[(dataset[‘Fare‘] > 7.91) & (dataset[‘Fare‘] <= 14.454), ‘Fare‘] = 1
dataset.loc[(dataset[‘Fare‘] > 14.454) & (dataset[‘Fare‘] <= 31), ‘Fare‘] = 2
dataset.loc[ dataset[‘Fare‘] > 31, ‘Fare‘] = 3
dataset[‘Fare‘] = dataset[‘Fare‘].astype(int)
train_df = train_df.drop([‘FareBand‘], axis=1)
combine = [train_df, test_df]
train_df.head(10)
test_df.head(10)
X_train = train_df.drop("Survived", axis=1)
Y_train = train_df["Survived"]
X_test = test_df.drop("PassengerId", axis=1).copy()
X_train.shape, Y_train.shape, X_test.shape
# Logistic Regression
logreg = LogisticRegression()
logreg.fit(X_train, Y_train)
Y_pred = logreg.predict(X_test)
acc_log = round(logreg.score(X_train, Y_train) * 100, 2)
acc_log
coeff_df = pd.DataFrame(train_df.columns.delete(0))
coeff_df.columns = [‘Feature‘]
coeff_df["Correlation"] = pd.Series(logreg.coef_[0])
coeff_df.sort_values(by=‘Correlation‘, ascending=False)
# Support Vector Machines
svc = SVC()
svc.fit(X_train, Y_train)
Y_pred = svc.predict(X_test)
acc_svc = round(svc.score(X_train, Y_train) * 100, 2)
acc_svc
knn = KNeighborsClassifier(n_neighbors = 3)
knn.fit(X_train, Y_train)
Y_pred = knn.predict(X_test)
acc_knn = round(knn.score(X_train, Y_train) * 100, 2)
acc_knn
# Gaussian Naive Bayes
gaussian = GaussianNB()
gaussian.fit(X_train, Y_train)
Y_pred = gaussian.predict(X_test)
acc_gaussian = round(gaussian.score(X_train, Y_train) * 100, 2)
acc_gaussian
# Perceptron
perceptron = Perceptron()
perceptron.fit(X_train, Y_train)
Y_pred = perceptron.predict(X_test)
acc_perceptron = round(perceptron.score(X_train, Y_train) * 100, 2)
acc_perceptron
# Linear SVC
linear_svc = LinearSVC()
linear_svc.fit(X_train, Y_train)
Y_pred = linear_svc.predict(X_test)
acc_linear_svc = round(linear_svc.score(X_train, Y_train) * 100, 2)
acc_linear_svc
# Stochastic Gradient Descent
sgd = SGDClassifier()
sgd.fit(X_train, Y_train)
Y_pred = sgd.predict(X_test)
acc_sgd = round(sgd.score(X_train, Y_train) * 100, 2)
acc_sgd
# Decision Tree
decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, Y_train)
Y_pred = decision_tree.predict(X_test)
acc_decision_tree = round(decision_tree.score(X_train, Y_train) * 100, 2)
acc_decision_tree
# Random Forest
random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, Y_train)
Y_pred = random_forest.predict(X_test)
random_forest.score(X_train, Y_train)
acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2)
acc_random_forest
models = pd.DataFrame({
‘Model‘: [‘Support Vector Machines‘, ‘KNN‘, ‘Logistic Regression‘,
‘Random Forest‘, ‘Naive Bayes‘, ‘Perceptron‘,
‘Stochastic Gradient Decent‘, ‘Linear SVC‘,
‘Decision Tree‘],
‘Score‘: [acc_svc, acc_knn, acc_log,
acc_random_forest, acc_gaussian, acc_perceptron,
acc_sgd, acc_linear_svc, acc_decision_tree]})
models.sort_values(by=‘Score‘, ascending=False)
submission = pd.DataFrame({
"PassengerId": test_df["PassengerId"],
"Survived": Y_pred
})
# submission.to_csv(‘../output/submission.csv‘, index=False)
[kaggle入门] Titanic Machine Learning from Disaster
标签:div gradient adr sign dai dex wfs sort ctr
原文地址:http://www.cnblogs.com/daigz1224/p/6995349.html