Matrix
Time Limit: 3000MS |
|
Memory Limit: 65536K |
Total Submissions: 18021 |
|
Accepted: 6755 |
Description
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a ‘0‘ then change it into ‘1‘ otherwise change
it into ‘0‘). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2
y2", which has been described above.
Output
For each querying output one line, which has an integer representing A[x, y].
There is a blank line between every two continuous test cases.
Sample Input
1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1
Sample Output
1
0
0
1
Source
POJ Monthly,Lou Tiancheng
二维的树状数组。一般的改动和查询
对二维的树状数组的改动
void add(int i,int j,int d,int n)
{
int x , y ;
for(x = i ; x <= n ; x += lowbit(x))
for(y = j ; y <= n ; y += lowbit(y))
c[x][y] += d;
}
查询
int sum(int i,int j)
{
int a = 0 , x , y ;
for(x = i ; x >= 0 ; x -= lowbit(x))
for(y = j ; y >= 0 ; y -= lowbit(y))
a += c[x][y] ;
return a ;
}
题意:给出n*n的矩阵,矩阵中的值仅仅能为0或者1,初始值所有是0。C x1 y1 x2 y2 表示在(x1,y1)和(x2,y2)围成的矩形中的所有值变换 ;Q x y 查询该点当前的值。也能够觉得是统计该点经过了几次的变化。
在这个题中树状数组由后向前更新,每个点的值表示由该点向前的全部点变换的次数
对于C的操作
首先 将(1,1)到(x2,y2)的全部点+1 ,代表有该点向前的矩形中的变化次数均+1。再由 (x1-1,y2)(x2,y1-1)均-1,(x1-1,y1-1)+1,平衡掉多操作的点,那么当计算该点变换次数时。由该点向后累加,得到的总和就是该点的变换次数。假设是奇数代表1,否则是0.
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int c[1010][1010] ;
int lowbit(int x)
{
return x & -x ;
}
void add(int i,int j,int d)
{
int x , y ;
for(x = i ; x > 0 ; x -= lowbit(x))
for(y = j ; y > 0 ; y -= lowbit(y))
c[x][y] += d;
}
int sum(int i,int j,int n)
{
int a = 0 , x , y ;
for(x = i ; x <= n ; x += lowbit(x))
for(y = j ; y <= n ; y += lowbit(y))
a += c[x][y] ;
return a ;
}
int main()
{
int t , tt , i , j , n , m , x1 , y1 , x2 , y2 ;
char ch ;
scanf("%d", &t);
for(tt = 1 ; tt <= t ; tt++)
{
scanf("%d %d", &n, &m);
memset(c,0,sizeof(c));
while(m--)
{
getchar();
scanf("%c", &ch);
if( ch == ‘C‘ )
{
scanf("%d %d %d %d", &x1, &y1, &x2, &y2);
add(x2,y2,1);
add(x1-1,y2,-1);
add(x2,y1-1,-1);
add(x1-1,y1-1,1);
}
else
{
scanf("%d %d", &x1, &y1);
printf("%d\n", sum(x1,y1,n)%2 );
}
}
if(tt != t)
printf("\n");
}
return 0;
}