码迷,mamicode.com
首页 > 编程语言 > 详细

线性规划算法原理介绍

时间:2017-06-20 21:05:23      阅读:144      评论:0      收藏:0      [点我收藏+]

标签:算法   线性规划   

线性规划定义:

求满足约束的最优目标,目标是变量的线性函数,约束是变量的相等或不等表达式。

单纯形算法

1 松弛变量 为将不等式转化为等式添加的非负变量 
比如 将f(xi) >0 变成 xj= f(xi) ,那么xj就是松弛变量

主元操作(pivot)

1 任意在目标函数中系数为正的基本变量xi, 计算对其约束最紧的松弛变量yj 
2 将yj= f(x) 转换成 xi = f(x,yj) 
3 将上式代入其余约束和目标函数 ,从而生成新的线性方程组

单纯形算法(simplex)

1 将标准型转化为基本解可行的松弛型 
2 如果目标函数里还有正系数,就执行主元操作 
3 按照基本解,求基本变量和目标值,即位最优解

单纯形算法证明:

求证: 如果线性规划有最优解,那么单纯形算法得到的解一定是最优解;如果线性规划没有最优解,那么单纯形算法一定会返回无解 
已知: 
1 松弛变量>0 
2 第一步转化好松弛型,其基本解可行 
证明: 
如果线性规划没有最优解,那么单纯形算法一定会返回无解 
证明: 因为基本解可行,所以一定有解 
如果线性规划有最优解,那么单纯形算法得到的解一定是最优解 
证明: 
1 目标函数都是等价变换的,不会影响其值 
2 最后目标函数系数都是负的,而基本变量和松弛变量都是非负数


本文出自 “12033555” 博客,请务必保留此出处http://12043555.blog.51cto.com/12033555/1940287

线性规划算法原理介绍

标签:算法   线性规划   

原文地址:http://12043555.blog.51cto.com/12033555/1940287

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!