标签:问题 abc 匿名函数 命名 filter lower 返回 log nbsp
函数式编程是使用一系列函数去解决问题,按照一般编程思维,面对问题时我们的思考方式是“怎么干”,而函数函数式编程的思考方式是我要“干什么”。 至于函数式编程的特点暂不总结,我们直接拿例子来体会什么是函数式编程。
lambda表达式(匿名函数):
普通函数与匿名函数的定义方式:
#普通函数 def add(a,b): return a + b print add(2,3) #匿名函数 add = lambda a,b : a + b print add(2,3) #========输出=========== 5
匿名函数的命名规则,用lamdba 关键字标识,冒号(:)左侧表示函数接收的参数(a,b) ,冒号(:)右侧表示函数的返回值(a+b)。
因为lamdba在创建时不需要命名,所以,叫匿名函数^_^
Map函数:
计算字符串长度
abc = [‘com‘,‘fnng‘,‘cnblogs‘] for i in range(len(abc)): print len(abc[i]) #========输出=========== 3 4 7
定义abc字符串数组,计算abc长度然后循环输出数组中每个字符串的长度。
来看看map()函数是如何来实现这个过程的。
abc_len = map(len,[‘hao‘,‘fnng‘,‘cnblogs‘]) print abc_len #========输出=========== [3, 4, 7]
虽然,输出的结果中是一样的,但它们的形式不同,第一种是单纯的数值了,map()函数的输出仍然保持了数组的格式。
大小写转换;
python提供有了,upper() 和 lower() 来转换大小写。
#大小写转换 ss=‘hello WORLD!‘ print ss.upper() #转换成大写 print ss.lower() #转换成小写 #========输出=========== HELLO WORLD! hello world!
通过map()函数转换:
def to_lower(item): return item.lower() name = map(to_lower,[‘cOm‘,‘FNng‘,‘cnBLoGs‘]) print name #========输出=========== [‘com‘, ‘fnng‘, ‘cnblogs‘]
这个例子中我们可以看到,我们写义了一个函数toUpper,这个函数没有改变传进来的值,只是把传进来的值做个简单的操作,然后返回。然后,我们把其用在map函数中,就可以很清楚地描述出我们想要干什么。
再来看看普通的方式是如何实现字符串大小写转换的:
abc = [‘cOm‘,‘FNng‘,‘cnBLoGs‘] lowname = [] for i in range(len(abc)): lowname.append(abc[i].lower()) print lowname #========输出=========== [‘hao‘, ‘fnng‘, ‘cnblogs‘]
map()函数加上lambda表达式(匿名函数)可以实现更强大的功能。
#求平方 #0*0,1*1,2*2,3*3,....8*8 squares = map(lambda x : x*x ,range(9)) print squares #========输出=========== [0, 1, 4, 9, 16, 25, 36, 49, 64]
Reduce函数:
def add(a,b): return a+b add = reduce(add,[2,3,4]) print add #========输出=========== 9
对于Reduce函数每次是需要对两个数据进行处理的,首选取2 和3 ,通过add函数相加之后得到5,接着拿5和4 ,再由add函数处理,最终得到9 。
在前面map函数例子中我们可以看到,map函数是每次只对一个数据进行处理。
然后,我们发现通过Reduce函数加lambda表达式式实现阶乘是如何简单:
#5阶乘 #5!=1*2*3*4*5 print reduce(lambda x,y: x*y, range(1,6)) #========输出=========== 120
Python中的除了map和reduce外,还有一些别的如filter, find, all, any的函数做辅助(其它函数式的语言也有),可以让你的代码更简洁,更易读。 我们再来看一个比较复杂的例子:
#计算数组中正整数的值 number =[2, -5, 9, -7, 2, 5, 4, -1, 0, -3, 8] count = 0 sum = 0 for i in range(len(number)): if number[i]>0: count += 1 sum += number[i] print sum,count if count>0: average = sum/count print average #========输出=========== 30 6 5
如果用函数式编程,这个例子可以写成这样:
number =[2, -5, 9, -7, 2, 5, 4, -1, 0, -3, 8] sum = filter(lambda x: x>0, number) average = reduce(lambda x,y: x+y, sum)/len(sum) print average #========输出=========== 5
最后我们可以看到,函数式编程有如下好处:
1)代码更简单了。
2)数据集,操作,返回值都放到了一起。
3)你在读代码的时候,没有了循环体,于是就可以少了些临时变量,以及变量倒来倒去逻辑。
4)你的代码变成了在描述你要干什么,而不是怎么去干。
转自:http://www.cnblogs.com/fnng/p/3699893.html
标签:问题 abc 匿名函数 命名 filter lower 返回 log nbsp
原文地址:http://www.cnblogs.com/shixisheng/p/7079956.html