标签:可用内存 付出 自己 相等 永久代 结束 数据 大致 范围
很多教科书判断对象是否存活的算法是这样的:给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器都为0的对象就是不可能再被使用的。
客观地说,引用计数算法(Reference Counting)的实现简单,判定效率也很高,在大部分情况下它都是一个不错的算法,也有一些比较著名的应用案例,例如微软的COM(Component Object Model)技术、使用ActionScript 3的FlashPlayer、Python语言以及在游戏脚本领域中被广泛应用的Squirrel中都使用了引用计数算法进行内存管理。但是,Java语言中没有选用引用计数算法来管理内存,其中最主要的原因是它很难解决对象之间的相互循环引用的问题。
在主流的商用程序语言中(Java和C#,甚至包括前面提到的古老的Lisp),都是使用根搜索算法(GC Roots Tracing)判定对象是否存活的。这个算法的基本思路就是通过一系列的名为"GC Roots"的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。如图3-1所示,对象object 5、object 6、object 7虽然互相有关联,但是它们到GC Roots是不可达的,所以它们将会被判定为是可回收的对象。
在Java语言里,可作为GC Roots的对象包括下面几种:
|
图3-1 根搜索算法判定对象是否可回收 |
在JDK 1.2之后,Java对引用的概念进行了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)、虚引用(Phantom Reference)四种,这四种引用强度依次逐渐减弱。
强引用就是指在程序代码之中普遍存在的,类似"Object obj = new Object()"这类的引用,只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象。
软引用用来描述一些还有用,但并非必需的对象。对于软引用关联着的对象,在系统将要发生内存溢出异常之前,将会把这些对象列进回收范围之中并进行第二次回收。如果这次回收还是没有足够的内存,才会抛出内存溢出异常。在JDK 1.2之后,提供了SoftReference类来实现软引用。
弱引用也是用来描述非必需对象的,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在JDK 1.2之后,提供了WeakReference类来实现弱引用。
虚引用也称为幽灵引用或者幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的就是希望能在这个对象被收集器回收时收到一个系统通知。在JDK 1.2之后,提供了PhantomReference类来实现虚引用。
在根搜索算法中不可达的对象,也并非是"非死不可"的,这时候它们暂时处于"缓刑"阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行根搜索后发现没有与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为"没有必要执行"。
如果这个对象被判定为有必要执行finalize()方法,那么这个对象将会被放置在一个名为F-Queue的队列之中,并在稍后由一条由虚拟机自动建立的、低优先级的Finalizer线程去执行。这里所谓的"执行"是指虚拟机会触发这个方法,但并不承诺会等待它运行结束。这样做的原因是,如果一个对象在finalize()方法中执行缓慢,或者发生了死循环(更极端的情况),将很可能会导致F-Queue队列中的其他对象永久处于等待状态,甚至导致整个内存回收系统崩溃。finalize()方法是对象逃脱死亡命运的最后一次机会,稍后GC将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中成功拯救自己—只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或对象的成员变量,那在第二次标记时它将被移除出"即将回收"的集合;如果对象这时候还没有逃脱,那它就真的离死不远了。从代码清单3-2中我们可以看到一个对象的finalize()被执行,但是它仍然可以存活。
很多人认为方法区(或者HotSpot虚拟机中的永久代)是没有垃圾收集的,Java虚拟机规范中确实说过可以不要求虚拟机在方法区实现垃圾收集,而且在方法区进行垃圾收集的"性价比"一般比较低:在堆中,尤其是在新生代中,常规应用进行一次垃圾收集一般可以回收70%~95%的空间,而永久代的垃圾收集效率远低于此。
永久代的垃圾收集主要回收两部分内容:废弃常量和无用的类。
回收废弃常量与回收Java堆中的对象非常类似。以常量池中字面量的回收为例,假如一个字符串"abc"已经进入了常量池中,但是当前系统没有任何一个String对象是叫做"abc"的,换句话说是没有任何String对象引用常量池中的"abc"常量,也没有其他地方引用了这个字面量,如果在这时候发生内存回收,而且必要的话,这个"abc"常量就会被系统"请"出常量池。常量池中的其他类(接口)、方法、字段的符号引用也与此类似。
类需要同时满足下面3个条件才能算是"无用的类":
Java 中的堆是 JVM 所管理的最大的一块内存空间,主要用于存放各种类的实例对象。
在 Java 中,堆被划分成两个不同的区域:新生代 ( Young )、老年代 ( Old )。
ps:其实还有一个永久代的概念,是用来存储方法区中的信息,这个概念已经过时了,方法区中的信息也会发生变化,而且Hotspot也在废除永久代。
新生代 ( Young ) 又被划分为三个区域:Eden、From Survivor、To Survivor。
这样划分的目的是为了使 JVM 能够更好的管理堆内存中的对象,包括内存的分配以及回收。
堆的内存模型大致为:
从图中可以看出: 堆大小 = 新生代 + 老年代。其中,堆的大小可以通过参数 –Xms、-Xmx 来指定。
最基础的收集算法是"标记-清除"(Mark-Sweep)算法,如它的名字一样,算法分为"标记"和"清除"两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象,它的标记过程其实在前一节讲述对象标记判定时已经基本介绍过了。之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其缺点进行改进而得到的。它的主要缺点有两个:一个是效率问题,标记和清除过程的效率都不高;另外一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致,当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。
为了解决效率问题,一种称为"复制"(Copying)的收集算法出现了,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对其中的一块进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为原来的一半,未免太高了一点。
现在的商业虚拟机都采用这种收集算法来回收新生代,IBM的专门研究表明,新生代中的对象98%是朝生夕死的,所以并不需要按照1∶1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中的一块Survivor。当回收时,将Eden和Survivor中还存活着的对象一次性地拷贝到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor的空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1,也就是每次新生代中可用内存空间为整个新生代容量的90%(80%+10%),只有10%的内存是会被"浪费"的。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。
内存的分配担保就好比我们去银行借款,如果我们信誉很好,在98%的情况下都能按时偿还,于是银行可能会默认我们下一次也能按时按量地偿还贷款,只需要有一个担保人能保证如果我不能还款时,可以从他的账户扣钱,那银行就认为没有风险了。内存的分配担保也一样,如果另外一块Survivor空间没有足够的空间存放上一次新生代收集下来的存活对象,这些对象将直接通过分配担保机制进入老年代。
根据老年代的特点,有人提出了另外一种"标记-整理"(Mark-Compact)算法,标记过程仍然与"标记-清除"算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存,"标记-整理"算法的示意图如图3-4所示。
当前商业虚拟机的垃圾收集都采用"分代收集"(Generational Collection)算法,这种算法并没有什么新的思想,只是根据对象的存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用"标记-清理"或"标记-整理"算法来进行回收。
如果说收集算法是内存回收的方法论,垃圾收集器就是内存回收的具体实现。
没有万能的收集器,所以我们选择的只是对具体应用最合适的收集器。
下面罗列Sun HotSpot的收集器:
Serial收集器是最基本、历史最悠久的收集器,复制算法的收集器,曾经(在JDK 1.3.1之前)是虚拟机新生代收集的唯一选择。大家看名字就知道,这个收集器是一个单线程的收集器,但它的"单线程"的意义并不仅仅是说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程(Sun将这件事情称之为"Stop The World"),直到它收集结束。
ParNew收集器其实就是Serial收集器的多线程版本。复制算法的收集器,
Parallel Scavenge收集器也是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器。Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值。
Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用"标记-整理"算法。
Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和"标记-整理"算法。
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用都集中在互联网站或B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。
从名字(包含"Mark Sweep")上就可以看出CMS收集器是基于"标记-清除"算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为4个步骤,包括:
初始标记(CMS initial mark)
并发标记(CMS concurrent mark)
重新标记(CMS remark)
并发清除(CMS concurrent sweep)
其中初始标记、重新标记这两个步骤仍然需要"Stop The World"。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC Roots Tracing的过程,而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。
但是CMS还远达不到完美的程度,它有以下三个显著的缺点:
G1(Garbage First)收集器是当前收集器技术发展的最前沿成果,在JDK 1.6_Update14中提供了Early Access版本的G1收集器以供试用。在将来JDK 1.7正式发布的时候,G1收集器很可能会有一个成熟的商用版本随之发布。
它与前面的CMS收集器相比有两个显著的改进:一是G1收集器是基于"标记-整理"算法实现的收集器,也就是说它不会产生空间碎片,这对于长时间运行的应用系统来说非常重要。二是它可以非常精确地控制停顿,既能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了。
对象的内存分配,往大方向上讲,就是在堆上分配(但也可能经过JIT编译后被拆散为标量类型并间接地在栈上分配),对象主要分配在新生代的Eden区上,如果启动了本地线程分配缓冲,将按线程优先在TLAB上分配。少数情况下也可能会直接分配在老年代中,分配的规则并不是百分之百固定的,其细节取决于当前使用的是哪一种垃圾收集器组合,还有虚拟机中与内存相关的参数的设置。
几条最普遍的内存分配规则:
Minor GC和Full GC有什么不一样吗?
新生代GC(Minor GC):指发生在新生代的垃圾收集动作,因为Java对象大多都具备朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度也比较快。
老年代GC(Major GC / Full GC):指发生在老年代的GC,出现了Major GC,经常会伴随至少一次的Minor GC(但非绝对的,在ParallelScavenge收集器的收集策略里就有直接进行Major GC的策略选择过程)。MajorGC的速度一般会比Minor GC慢10倍以上。
在发生Minor GC时,虚拟机会检测之前每次晋升到老年代的平均大小是否大于老年代的剩余空间大小,如果大于,则改为直接进行一次Full GC。如果小于,则查看HandlePromotionFailure设置是否允许担保失败;如果允许,那只会进行Minor GC;如果不允许,则也要改为进行一次Full GC。
标签:可用内存 付出 自己 相等 永久代 结束 数据 大致 范围
原文地址:http://www.cnblogs.com/xiaolang8762400/p/7083144.html