标签:space 跟踪 系统 代码示例 大小 span 抛出异常 系统通知 结果
JVM的四种引用状态
在Java虚拟机5:Java垃圾回收(GC)机制详解一文中,有简单提到过JVM的四种引用状态,当时只是简单学习,知道有这么一个概念,对四种引用状态理解不深。这两天重看虚拟机这部分的时候,写了很多例子详细研究了一下JVM的几种引用,对于JVM的引用理解加深了不少,因此总结写一篇文章总结并分享下。
首先,还是先从JVM四种引用状态开始,这部分摘抄自周志明老师的《深入理解Java虚拟机:JVM高级特性与最佳实践》一书。
在JDK1.2之前,Java中的引用的定义很传统:如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着一个引用。这种定义很纯粹,但是太过狭隘,一个对象在这种顶一下只有被引用或者没有被引用两种状态,对于如何描述一些"食之无味,弃之可惜"的对象就显得无能为力。我们希望能描述这样一类对象:当内存空间还足够时,则能保留在内存之中;如果内存空间在进行垃圾收集后还是非常紧张,则可以抛弃这些对象(注意和前面一段蓝字的对比学习)。很多系统的缓存功能都符合这样的引用场景。
在JDK1.2之后,Java对引用的概念进行了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)、虚引用(Phantom Reference)4种,这4中引用强度一次减弱。
写于代码开始前
在通过代码研究几种引用状态之前,先定义一些参数,后面所有部分的代码示例都使用这些参数。
首先是JVM的参数,这里我使用的是:
-Xms20M -Xmx20M -Xmn10M -XX:SurvivorRatio=8 -XX:+UseParNewGC -verbose:gc -XX:+PrintGCDetails
这意味着:
其次,再定义一个常量类"_1MB":
/** * 1M */ private static final int _1MB = 1024 * 1024;
代码示例使用byte数组,每个byte为1个字节,因此定义一个"_1MB"的常量就可以方便得到1M、2M、3M...的内存空间了。
强引用的研究
关于强引用的研究,研究的重点在于验证"当一个对象到GC Roots没有任何引用链相连,则证明此对象是不可用的(要被回收)"这句话的正确性。虚拟机参数上面列了,首先写一个空方法:
1 /** 2 * @author 五月的仓颉http://www.cnblogs.com/xrq730/p/7082471.html 3 */ 4 @Test 5 public void testStrongReference0() { 6 7 }
程序运行结果为:
1 Heap 2 par new generation total 9216K, used 3699K [0x00000000f9a00000, 0x00000000fa400000, 0x00000000fa400000) 3 eden space 8192K, 45% used [0x00000000f9a00000, 0x00000000f9d9cdc0, 0x00000000fa200000) 4 from space 1024K, 0% used [0x00000000fa200000, 0x00000000fa200000, 0x00000000fa300000) 5 to space 1024K, 0% used [0x00000000fa300000, 0x00000000fa300000, 0x00000000fa400000) 6 tenured generation total 10240K, used 0K [0x00000000fa400000, 0x00000000fae00000, 0x00000000fae00000) 7 the space 10240K, 0% used [0x00000000fa400000, 0x00000000fa400000, 0x00000000fa400200, 0x00000000fae00000) 8 compacting perm gen total 21248K, used 4367K [0x00000000fae00000, 0x00000000fc2c0000, 0x0000000100000000) 9 the space 21248K, 20% used [0x00000000fae00000, 0x00000000fb243d88, 0x00000000fb243e00, 0x00000000fc2c0000) 10 No shared spaces configured.
这意味着新生代中本身就有3699K的内存空间。很好理解,因为虚拟机启动的时候就会加载一部分数据到内存中,这部分数据的大小为3699K。
下一步我们放一个4M的byte数组进去(4M是因为找一个相对大点的数字,结果会比较明显),4M=4096K,加上原来的3966K等于8062K。对这8062K内存空间触发一次GC:
1 /** 2 * @author 五月的仓颉http://www.cnblogs.com/xrq730/p/7082471.html 3 */ 4 @Test 5 public void testStrongReference0() { 6 System.out.println("**********强引用测试(放一个4M的数组,触发GC)**********"); 7 8 byte[] bytes = new byte[4 * _1MB]; 9 10 // 手动触发GC 11 System.gc(); 12 }
运行结果为:
1 **********强引用测试(放一个4M的数组,触发GC)********** 2 [Full GC[Tenured: 0K->5161K(10240K), 0.0085630 secs] 7958K->5161K(19456K), [Perm : 4354K->4354K(21248K)], 0.0086002 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] 3 Heap 4 par new generation total 9216K, used 284K [0x00000000f9a00000, 0x00000000fa400000, 0x00000000fa400000) 5 eden space 8192K, 3% used [0x00000000f9a00000, 0x00000000f9a47300, 0x00000000fa200000) 6 from space 1024K, 0% used [0x00000000fa200000, 0x00000000fa200000, 0x00000000fa300000) 7 to space 1024K, 0% used [0x00000000fa300000, 0x00000000fa300000, 0x00000000fa400000) 8 tenured generation total 10240K, used 5161K [0x00000000fa400000, 0x00000000fae00000, 0x00000000fae00000) 9 the space 10240K, 50% used [0x00000000fa400000, 0x00000000fa90a548, 0x00000000fa90a600, 0x00000000fae00000) 10 compacting perm gen total 21248K, used 4367K [0x00000000fae00000, 0x00000000fc2c0000, 0x0000000100000000) 11 the space 21248K, 20% used [0x00000000fae00000, 0x00000000fb243dc0, 0x00000000fb243e00, 0x00000000fc2c0000) 12 No shared spaces configured.
总结一下这次GC的结果(由于这篇不是研究内存分配的文章,因此我们只关注结果,至于过程到底为什么就不细究了):
总结起来就是4M的byte数组并没有被回收(因为总共有5161K的对象,虚拟机启动的时候也才加载了3699K不到5161K,那4M的byte数组肯定是在的),原因是有bytes引用指向4M的byte数组。既然如此,我们把bytes置空看看结果如何:
1 /** 2 * @author 五月的仓颉http://www.cnblogs.com/xrq730/p/7082471.html 3 */ 4 @Test 5 public void testStrongReference0() { 6 System.out.println("**********强引用测试(放一个4M的数组,bytes置空,触发GC)**********"); 7 8 byte[] bytes = new byte[4 * _1MB]; 9 10 bytes = null; 11 12 // 手动触发GC 13 System.gc(); 14 }
运行结果为:
1 **********强引用测试(放一个4M的数组,bytes置空,触发GC)********** 2 [Full GC[Tenured: 0K->1064K(10240K), 0.0096213 secs] 7958K->1064K(19456K), [Perm : 4354K->4354K(21248K)], 0.0096644 secs] [Times: user=0.01 sys=0.00, real=0.01 secs] 3 Heap 4 par new generation total 9216K, used 284K [0x00000000f9a00000, 0x00000000fa400000, 0x00000000fa400000) 5 eden space 8192K, 3% used [0x00000000f9a00000, 0x00000000f9a47300, 0x00000000fa200000) 6 from space 1024K, 0% used [0x00000000fa200000, 0x00000000fa200000, 0x00000000fa300000) 7 to space 1024K, 0% used [0x00000000fa300000, 0x00000000fa300000, 0x00000000fa400000) 8 tenured generation total 10240K, used 1064K [0x00000000fa400000, 0x00000000fae00000, 0x00000000fae00000) 9 the space 10240K, 10% used [0x00000000fa400000, 0x00000000fa50a368, 0x00000000fa50a400, 0x00000000fae00000) 10 compacting perm gen total 21248K, used 4367K [0x00000000fae00000, 0x00000000fc2c0000, 0x0000000100000000) 11 the space 21248K, 20% used [0x00000000fae00000, 0x00000000fb243dc0, 0x00000000fb243e00, 0x00000000fc2c0000) 12 No shared spaces configured.
从GC详情我们可以看到:
很显然4M的byte数组被回收。
由这个例子我们回顾可以作为GC Roots的对象:
这次的回收正是因为第一条。本身有bytes(在虚拟机栈中)指向4M的byte数组,由于将bytes置空。因此4M的byte数组此时没有任何一个可以作为GC Roots对象的引用指向它,即4M的byte数组被虚拟机标记为可回收的垃圾,在GC时被回收。
稍微扩展一下,这里上面代码的做法是手动将bytes置空,其实方法调用结束也是一样的,栈帧消失,栈帧消失意味着bytes消失,那么4M的byte数组同样没有任何一个可以作为GC Roots对象的引用指向它,因此方法调用结束之后,4M的byte数组同样会被虚拟机标记为可回收的垃圾,在GC时被回收。
软引用的研究
软引用之前说过了,JDK提供了SoftReference类共开发者使用,那我们就利用SoftReference研究一下软引用,测试代码为:
1 /** 2 * @author 五月的仓颉http://www.cnblogs.com/xrq730/p/7082471.html 3 */ 4 @Test 5 public void testSoftReference0() { 6 System.out.println("**********软引用测试**********"); 7 8 byte[] bytes = new byte[4 * _1MB]; 9 SoftReference<byte[]> sr = new SoftReference<byte[]>(bytes); 10 System.out.println("GC前:" + sr.get()); 11 12 bytes = null; 13 14 System.gc(); 15 System.out.println("GC后:" + sr.get()); 16 }
同样的new一个4M的byte数组,通过SoftReference构造方法放到SoftReference中。
这段代码最值得注意的是第9行"bytes=null"这一句,如果不将bytes置空,那么4M的byte数组还与强引用关联着,内存不够虚拟机将抛出异常而不会尝试回收它;将bytes置空则不一样,4M的byte数组失去了强引用,但是它又在SoftReference中,这意味着这个4M的byte数组目前仅仅与软引用关联。
运行一下程序,结果为:
1 **********软引用测试********** 2 GC前:[B@76404629 3 [Full GC[Tenured: 0K->5161K(10240K), 0.0094088 secs] 7953K->5161K(19456K), [Perm : 4354K->4354K(21248K)], 0.0094428 secs] [Times: user=0.02 sys=0.00, real=0.01 secs] 4 GC后:[B@76404629 5 Heap 6 par new generation total 9216K, used 284K [0x00000000f9a00000, 0x00000000fa400000, 0x00000000fa400000) 7 eden space 8192K, 3% used [0x00000000f9a00000, 0x00000000f9a47330, 0x00000000fa200000) 8 from space 1024K, 0% used [0x00000000fa200000, 0x00000000fa200000, 0x00000000fa300000) 9 to space 1024K, 0% used [0x00000000fa300000, 0x00000000fa300000, 0x00000000fa400000) 10 tenured generation total 10240K, used 5161K [0x00000000fa400000, 0x00000000fae00000, 0x00000000fae00000) 11 the space 10240K, 50% used [0x00000000fa400000, 0x00000000fa90a778, 0x00000000fa90a800, 0x00000000fae00000) 12 compacting perm gen total 21248K, used 4367K [0x00000000fae00000, 0x00000000fc2c0000, 0x0000000100000000) 13 the space 21248K, 20% used [0x00000000fae00000, 0x00000000fb243f10, 0x00000000fb244000, 0x00000000fc2c0000) 14 No shared spaces configured.
看到GC前后,bytes都是"[B@76404629",很显然4M的byte数组并没有被回收。从内存空间来看,老年代中使用了5161K,和之前强引用测试是一样的,证明了这一点。
那我们怎么能看到弱引用的回收呢?既然弱引用是发生在内存不够之前,那只需要不断实例化byte数组,然后将之与软引用关联即可,代码为:
1 /** 2 * @author 五月的仓颉http://www.cnblogs.com/xrq730/p/7082471.html 3 */ 4 @Test 5 public void testSoftReference1() { 6 System.out.println("**********软引用测试**********"); 7 8 SoftReference<byte[]> sr0 = new SoftReference<byte[]>(new byte[4 * _1MB]); 9 SoftReference<byte[]> sr1 = new SoftReference<byte[]>(new byte[4 * _1MB]); 10 SoftReference<byte[]> sr2 = new SoftReference<byte[]>(new byte[4 * _1MB]); 11 SoftReference<byte[]> sr3 = new SoftReference<byte[]>(new byte[4 * _1MB]); 12 SoftReference<byte[]> sr4 = new SoftReference<byte[]>(new byte[4 * _1MB]); 13 SoftReference<byte[]> sr5 = new SoftReference<byte[]>(new byte[4 * _1MB]); 14 15 System.out.println(sr0.get()); 16 System.out.println(sr1.get()); 17 System.out.println(sr2.get()); 18 System.out.println(sr3.get()); 19 System.out.println(sr4.get()); 20 System.out.println(sr5.get()); 21 }
运行结果为:
1 **********软引用测试********** 2 [GC[ParNew: 7958K->1024K(9216K), 0.0041103 secs] 7958K->5187K(19456K), 0.0041577 secs] [Times: user=0.05 sys=0.00, real=0.00 secs] 3 [GC[ParNew: 5203K->331K(9216K), 0.0036532 secs] 9366K->9481K(19456K), 0.0036694 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4 [GC[ParNew: 4427K->4427K(9216K), 0.0000249 secs][Tenured: 9149K->9149K(10240K), 0.0054937 secs] 13577K->13246K(19456K), [Perm : 4353K->4353K(21248K)], 0.0055600 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] 5 [Full GC[Tenured: 9149K->783K(10240K), 0.0071252 secs] 13246K->783K(19456K), [Perm : 4353K->4352K(21248K)], 0.0071560 secs] [Times: user=0.02 sys=0.00, real=0.01 secs] 6 [GC[ParNew: 4096K->41K(9216K), 0.0010362 secs] 4879K->4921K(19456K), 0.0010745 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 7 [GC[ParNew: 4137K->10K(9216K), 0.0009216 secs] 9017K->8986K(19456K), 0.0009366 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 8 null 9 null 10 null 11 [B@4783165b 12 [B@6f30d50a 13 [B@6ef2bc8d 14 Heap 15 par new generation total 9216K, used 4307K [0x00000000f9a00000, 0x00000000fa400000, 0x00000000fa400000) 16 eden space 8192K, 52% used [0x00000000f9a00000, 0x00000000f9e32560, 0x00000000fa200000) 17 from space 1024K, 1% used [0x00000000fa200000, 0x00000000fa202978, 0x00000000fa300000) 18 to space 1024K, 0% used [0x00000000fa300000, 0x00000000fa300000, 0x00000000fa400000) 19 tenured generation total 10240K, used 8975K [0x00000000fa400000, 0x00000000fae00000, 0x00000000fae00000) 20 the space 10240K, 87% used [0x00000000fa400000, 0x00000000facc3f40, 0x00000000facc4000, 0x00000000fae00000) 21 compacting perm gen total 21248K, used 4366K [0x00000000fae00000, 0x00000000fc2c0000, 0x0000000100000000) 22 the space 21248K, 20% used [0x00000000fae00000, 0x00000000fb2439e0, 0x00000000fb243a00, 0x00000000fc2c0000) 23 No shared spaces configured.
从第8行~第13行的结果来看,前三个4M的byte数组被回收了,后三个4M的byte数组还在,这就证明了"被软引用关联的对象会在内存不够时被回收"。
这段代码我们可以做一个对比思考:
所以,很多时候对一些非必需的对象,我们可以将直接将其与软引用关联,这样内存不够时会先回收软引用关联的对象而不会抛出OutOfMemoryError,毕竟抛出OutOfMemoryError意味着整个应用将停止运行。
弱引用的研究
JDK给我们提供的了WeakReference用以将一个对象关联到弱引用,弱引用的测试比较简单,代码为:
1 /** 2 * @author 五月的仓颉http://www.cnblogs.com/xrq730/p/7082471.html 3 */ 4 @Test 5 public void testWeakReference() { 6 System.out.println("**********弱引用测试**********"); 7 8 WeakReference<byte[]> wr = new WeakReference<byte[]>(new byte[4 * _1MB]); 9 System.out.println("GC前:" + wr.get()); 10 11 System.gc(); 12 System.out.println("GC后:" + wr.get()); 13 }
我这里不定义一个强引用直接关联4M的byte数组(避免忘了将对象与强引用的关联取消),这也是使用SoftReference、WeakReference时我个人比较推荐的做法。程序运行的结果为:
1 **********弱引用测试********** 2 GC前:[B@21dd63a8 3 [Full GC[Tenured: 0K->1065K(10240K), 0.0080353 secs] 7958K->1065K(19456K), [Perm : 4353K->4353K(21248K)], 0.0080894 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] 4 GC后:null 5 Heap 6 par new generation total 9216K, used 284K [0x00000000f9a00000, 0x00000000fa400000, 0x00000000fa400000) 7 eden space 8192K, 3% used [0x00000000f9a00000, 0x00000000f9a47318, 0x00000000fa200000) 8 from space 1024K, 0% used [0x00000000fa200000, 0x00000000fa200000, 0x00000000fa300000) 9 to space 1024K, 0% used [0x00000000fa300000, 0x00000000fa300000, 0x00000000fa400000) 10 tenured generation total 10240K, used 1065K [0x00000000fa400000, 0x00000000fae00000, 0x00000000fae00000) 11 the space 10240K, 10% used [0x00000000fa400000, 0x00000000fa50a6e8, 0x00000000fa50a800, 0x00000000fae00000) 12 compacting perm gen total 21248K, used 4367K [0x00000000fae00000, 0x00000000fc2c0000, 0x0000000100000000) 13 the space 21248K, 20% used [0x00000000fae00000, 0x00000000fb243dc8, 0x00000000fb243e00, 0x00000000fc2c0000) 14 No shared spaces configured.
看到GC后bytes为null了,且新生代、老年代中也没见到有4M以上的大对象,从两个角度都证明了,GC之后4M的byte数组被回收了。
Reference与ReferenceQueue
前面用代码验证了强引用、软应用、弱引用三种引用状态,虚引用就不演示了,记住虚引用是用于跟踪对象的回收状态就够了。
下面再讲一个知识点ReferenceQueue,ReferenceQueue的作用分点讲解下:
讲完理论,用代码验证一下,还是使用软引用,不过为了显示更清楚把GC显示相关参数(-verbose:gc -XX:+PrintGCDetails)去掉,代码为:
1 /** 2 * @author 五月的仓颉http://www.cnblogs.com/xrq730/p/7082471.html 3 */ 4 @Test 5 public void testReferenceQueue() { 6 System.out.println("**********引用队列测试**********\n"); 7 8 ReferenceQueue<byte[]> referenceQueue = new ReferenceQueue<byte[]>(); 9 10 SoftReference<byte[]> sr0 = new SoftReference<byte[]>(new byte[4 * _1MB], referenceQueue); 11 SoftReference<byte[]> sr1 = new SoftReference<byte[]>(new byte[4 * _1MB], referenceQueue); 12 SoftReference<byte[]> sr2 = new SoftReference<byte[]>(new byte[4 * _1MB], referenceQueue); 13 SoftReference<byte[]> sr3 = new SoftReference<byte[]>(new byte[4 * _1MB], referenceQueue); 14 SoftReference<byte[]> sr4 = new SoftReference<byte[]>(new byte[4 * _1MB], referenceQueue); 15 SoftReference<byte[]> sr5 = new SoftReference<byte[]>(new byte[4 * _1MB], referenceQueue); 16 17 System.out.println("**********软引用关联的对象展示**********"); 18 System.out.println(sr0 + "---" + sr0.get()); 19 System.out.println(sr1 + "---" + sr1.get()); 20 System.out.println(sr2 + "---" + sr2.get()); 21 System.out.println(sr3 + "---" + sr3.get()); 22 System.out.println(sr4 + "---" + sr4.get()); 23 System.out.println(sr5 + "---" + sr5.get()); 24 25 System.out.println("**********引用队列中的SoftReference展示**********"); 26 System.out.println(referenceQueue.poll()); 27 System.out.println(referenceQueue.poll()); 28 System.out.println(referenceQueue.poll()); 29 System.out.println(referenceQueue.poll()); 30 System.out.println(referenceQueue.poll()); 31 System.out.println(referenceQueue.poll()); 32 }
运行结果为:
1 **********引用队列测试********** 2 3 **********软引用关联的对象展示********** 4 java.lang.ref.SoftReference@50ed0a5---null 5 java.lang.ref.SoftReference@fa4033b---null 6 java.lang.ref.SoftReference@58d01e82---null 7 java.lang.ref.SoftReference@4783165b---[B@6f30d50a 8 java.lang.ref.SoftReference@6ef2bc8d---[B@23905e3 9 java.lang.ref.SoftReference@6db17b38---[B@1f10d1cb 10 **********引用队列中的SoftReference展示********** 11 java.lang.ref.SoftReference@50ed0a5 12 java.lang.ref.SoftReference@fa4033b 13 java.lang.ref.SoftReference@58d01e82 14 null 15 null 16 null
看到由于内存不够,回收了前三个软引用,且回收的三个软引用内存地址都能对得上,这证明了上面的说法。
标签:space 跟踪 系统 代码示例 大小 span 抛出异常 系统通知 结果
原文地址:http://www.cnblogs.com/xrq730/p/7082471.html