码迷,mamicode.com
首页 > 编程语言 > 详细

Spark机器学习(6):决策树算法

时间:2017-07-06 22:53:52      阅读:223      评论:0      收藏:0      [点我收藏+]

标签:width   seq   选择   mlu   point   科学   基本知识   machine   learn   

1. 决策树基本知识

决策树就是通过一系列规则对数据进行分类的一种算法,可以分为分类树和回归树两类,分类树处理离散变量的,回归树是处理连续变量。

样本一般都有很多个特征,有的特征对分类起很大的作用,有的特征对分类作用很小,甚至没有作用。如决定是否对一个人贷款是,这个人的信用记录、收入等就是主要的判断依据,而性别、婚姻状况等等就是次要的判断依据。决策树构建的过程,就是根据特征的决定性程度,先使用决定性程度高的特征分类,再使用决定性程度低的特征分类,这样构建出一棵倒立的树,就是我们需要的决策树模型,可以用来对数据进行分类。

决策树学习的过程可以分为三个步骤:1)特征选择,即从众多特征中选择出一个作为当前节点的分类标准;2)决策树生成,从上到下构建节点;3)剪枝,为了预防和消除过拟合,需要对决策树剪枝。

2. 决策树算法

主要的决策树算法包括ID3、C4.5和CART。

ID3把信息增益作为选择特征的标准。由于取值较多的特征(如学号)的信息增益比较大,这种算法会偏向于取值较多的特征。而且该算法只能用于离散型的数据,优点是不需要剪枝。

C4.5和ID3比较类似,区别在于使用信息增益比替代信息增益作为选择特征的标准,因此比ID3更加科学,并且可以用于连续型的数据,但是需要剪枝。

CART(Classification And Regression Tree)采用的是Gini作为选择的标准。Gini越大,说明不纯度越大,这个特征就越不好。

3. MLlib的决策树算法

MLlib的决策树算法使用的随机森林RandomForest的方法,不过并不是真正的随机森林,因为实际上只有一棵决策树。

直接上代码:

import org.apache.log4j.{ Level, Logger }
import org.apache.spark.{ SparkConf, SparkContext }
import org.apache.spark.mllib.tree.DecisionTree
import org.apache.spark.mllib.tree.model.DecisionTreeModel
import org.apache.spark.mllib.util.MLUtils

/**
  * Created by Administrator on 2017/7/6.
  */
object DecisionTreeTest {

  def main(args: Array[String]): Unit = {

    // 设置运行环境
    val conf = new SparkConf().setAppName("Decision Tree")
      .setMaster("spark://master:7077").setJars(Seq("E:\\Intellij\\Projects\\MachineLearning\\MachineLearning.jar"))
    val sc = new SparkContext(conf)
    Logger.getRootLogger.setLevel(Level.WARN)

    // 读取样本数据并解析
    val dataRDD = MLUtils.loadLibSVMFile(sc, "hdfs://master:9000/ml/data/sample_dt_data.txt")
    // 样本数据划分,训练样本占0.8,测试样本占0.2
    val dataParts = dataRDD.randomSplit(Array(0.8, 0.2))
    val trainRDD = dataParts(0)
    val testRDD = dataParts(1)

    // 决策树参数
    val numClasses = 5
    val categoricalFeaturesInfo = Map[Int, Int]()
    val impurity = "gini"
    val maxDepth = 5
    val maxBins = 32
    // 建立决策树模型并训练
    val model = DecisionTree.trainClassifier(trainRDD, numClasses, categoricalFeaturesInfo,
      impurity, maxDepth, maxBins)

    // 对测试样本进行测试
    val predictionAndLabel = testRDD.map { point =>
      val score = model.predict(point.features)
      (score, point.label, point.features)
    }
    val showPredict = predictionAndLabel.take(50)
    println("Prediction" + "\t" + "Label" + "\t" + "Data")
    for (i <- 0 to showPredict.length - 1) {
      println(showPredict(i)._1 + "\t" + showPredict(i)._2 + "\t" + showPredict(i)._3)
    }

    // 误差计算
    val accuracy = 1.0 * predictionAndLabel.filter(x => x._1 == x._2).count() / testRDD.count()
    println("Accuracy = " + accuracy)

    // 保存模型
    val ModelPath = "hdfs://master:9000/ml/model/Decision_Tree_Model"
    model.save(sc, ModelPath)
    val sameModel = DecisionTreeModel.load(sc, ModelPath)

  }

运行结果:

技术分享

Spark机器学习(6):决策树算法

标签:width   seq   选择   mlu   point   科学   基本知识   machine   learn   

原文地址:http://www.cnblogs.com/mstk/p/7128540.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!