标签:分形 lex 参数 this 大量 java start turn ++
目前笔者接触过的分形主要有一下几种:
1.类似Clifford的分形。这种分形的特点是:分形的初始坐标为(0,0),通过初始坐标经过大量的迭代,得到一系列的点,根据得到的点来绘制分形曲线。这类分形的参数有限,可以很简单的实现。
2.类似IFS fern这样的分形。这种分形比上一种分形具有更多的参数,值得注意的是IFS fern分形的参数列表中有一项P值,该值表示的是各组不同的参数应该出现的概率,如果这个值没用上是无法得到想要的图形的。
3.类似Mandelbrot这样的分形。这种分形涉及到了复数的知识,以及时间逃逸算法。本质上是复平面上一系列点的集合,用时间逃逸算法来确定点是否在集合内,得到一系列的点,根据这些点来绘制图形。
4.类似L-System Sticks这样的分形。这类的分形需要定义母串,以及演变的规则,通过不同的母串和演变规则的到的点来绘制图形。演变规则和母串等的理解并不难,主要是涉及了坐标之间的变换较为难以计算。
下面是一段关于Mandelbrot分形的代码。
/** * 复数类 * @author CBS */ public class Complex { public double r; public double i; public Complex(double real,double image){ this.r=real; this.i=image; } //取复数的模 public double modulus(){ return Math.sqrt(r*r+i*i); } //复数的加法 public Complex add(Complex z){ double addr=r+z.r; double addi=i+z.i; return new Complex(addr,addi); } //复数的乘法 public Complex mul(Complex z){ double mulr=r*z.r-i*z.i; double muli=i*z.r+r*z.i; return new Complex(mulr,muli); } }
// 求最大的迭代次数的算法,时间逃逸算法 public int mand(Complex z, int maxIte) { Complex curComp = new Complex(0, 0); for (int i = 0; i < maxIte; i++) { if (curComp.modulus() > 2) return i; curComp = curComp.mul(curComp).add(z); } return maxIte; }
// 画图的算法 public void drawMand(Complex z, double scale, int MaxIte) { double pixUnit = 3 / (1080 * scale); double startx = z.r - 1080 * pixUnit / 2; double starty = z.i - 720 * pixUnit / 2; for (int i = 0; i < 1080; i++) { for (int j = 0; j < 720; j++) { double x0 = startx + i * pixUnit; double y0 = starty + j * pixUnit; Complex curComplex = new Complex(x0, y0); int time = mand(curComplex, MaxIte); if (time == MaxIte) { double x = x0 * 150 + 500;// 扩大出现方格 double y = y0 * 150 + 500; g.drawLine((int) x, (int) y, (int) x, (int) y); } } } }
更多的分形请关注http://paulbourke.net/fractals/
标签:分形 lex 参数 this 大量 java start turn ++
原文地址:http://www.cnblogs.com/cbs-writing/p/7112786.html