码迷,mamicode.com
首页 > 移动开发 > 详细

elasticsearch的mapping和analysis

时间:2017-07-08 17:56:53      阅读:330      评论:0      收藏:0      [点我收藏+]

标签:英语单词   lin   简单   状态   option   ase   如何   产生   ref   

 转发自:http://blog.csdn.net/hzrandd/article/details/47128895

 

分析和分析器

分析(analysis)是这样一个过程:

  • 首先,表征化一个文本块为适用于倒排索引单独的词(term)
  • 然后标准化这些词为标准形式,提高它们的“可搜索性”或“查全率”

这个工作是分析器(analyzer)完成的。一个分析器(analyzer)只是一个包装用于将三个功能放到一个包里:

字符过滤器

首先字符串经过字符过滤器(character filter),它们的工作是在表征化(译者注:这个词叫做断词更合适)前处理字符串。字符过滤器能够去除HTML标记,或者转换"&""and"

分词器

下一步,分词器(tokenizer)被表征化(断词)为独立的词。一个简单的分词器(tokenizer)可以根据空格或逗号将单词分开(译者注:这个在中文中不适用)。

表征过滤

最后,每个词都通过所有表征过滤(token filters),它可以修改词(例如将"Quick"转为小写),去掉词(例如停用词像"a""and"``"the"等等),或者增加词(例如同义词像"jump""leap"

Elasticsearch提供很多开箱即用的字符过滤器,分词器和表征过滤器。这些可以组合来创建自定义的分析器以应对不同的需求。我们将在《自定义分析器》章节详细讨论。

内建的分析器

不过,Elasticsearch还附带了一些预装的分析器,你可以直接使用它们。下面我们列出了最重要的几个分析器,来演示这个字符串分词后的表现差异:

"Set the shape to semi-transparent by calling set_trans(5)"

标准分析器

标准分析器是Elasticsearch默认使用的分析器。对于文本分析,它对于任何语言都是最佳选择(译者注:就是没啥特殊需求,对于任何一个国家的语言,这个分析器就够用了)。它根据Unicode Consortium的定义的单词边界(word boundaries)来切分文本,然后去掉大部分标点符号。最后,把所有词转为小写。产生的结果为:

set, the, shape, to, semi, transparent, by, calling, set_trans, 5

简单分析器

简单分析器将非单个字母的文本切分,然后把每个词转为小写。产生的结果为:

set, the, shape, to, semi, transparent, by, calling, set, trans

空格分析器

空格分析器依据空格切分文本。它不转换小写。产生结果为:

Set, the, shape, to, semi-transparent, by, calling, set_trans(5)

语言分析器

特定语言分析器适用于很多语言。它们能够考虑到特定语言的特性。例如,english分析器自带一套英语停用词库——像andthe这些与语义无关的通用词。这些词被移除后,因为语法规则的存在,英语单词的主体含义依旧能被理解(译者注:stem English words这句不知道该如何翻译,查了字典,我理解的大概意思应该是将英语语句比作一株植物,去掉无用的枝叶,主干依旧存在,停用词好比枝叶,存在与否并不影响对这句话的理解。)。

english分析器将会产生以下结果:

set, shape, semi, transpar, call, set_tran, 5

注意"transparent""calling""set_trans"是如何转为词干的。

当分析器被使用

当我们索引(index)一个文档,全文字段会被分析为单独的词来创建倒排索引。不过,当我们在全文字段搜索(search)时,我们要让查询字符串经过同样的分析流程处理,以确保这些词在索引中存在。

全文查询我们将在稍后讨论,理解每个字段是如何定义的,这样才可以让它们做正确的事:

  • 当你查询全文(full text)字段,查询将使用相同的分析器来分析查询字符串,以产生正确的词列表。
  • 当你查询一个确切值(exact value)字段,查询将不分析查询字符串,但是你可以自己指定。

现在你可以明白为什么《映射和分析》的开头会产生那种结果:

  • date字段包含一个确切值:单独的一个词"2014-09-15"
  • _all字段是一个全文字段,所以分析过程将日期转为三个词:"2014""09""15"

当我们在_all字段查询2014,它一个匹配到12条推文,因为这些推文都包含词2014

GET /_search?q=2014              # 12 results

当我们在_all字段中查询2014-09-15,首先分析查询字符串,产生匹配任一词20140915的查询语句,它依旧匹配12个推文,因为它们都包含词2014

GET /_search?q=2014-09-15        # 12 results !

当我们在date字段中查询2014-09-15,它查询一个确切的日期,然后只找到一条推文:

GET /_search?q=date:2014-09-15   # 1  result

当我们在date字段中查询2014,没有找到文档,因为没有文档包含那个确切的日期:

GET /_search?q=date:2014         # 0  results !

测试分析器

尤其当你是Elasticsearch新手时,对于如何分词以及存储到索引中理解起来比较困难。为了更好的理解如何进行,你可以使用analyze API来查看文本是如何被分析的。在查询字符串参数中指定要使用的分析器,被分析的文本做为请求体:

GET /_analyze?analyzer=standard
Text to analyze

结果中每个节点在代表一个词:

{
   "tokens": [
      {
         "token":        "text",
         "start_offset": 0,
         "end_offset":   4,
         "type":         "<ALPHANUM>",
         "position":     1
      },
      {
         "token":        "to",
         "start_offset": 5,
         "end_offset":   7,
         "type":         "<ALPHANUM>",
         "position":     2
      },
      {
         "token":        "analyze",
         "start_offset": 8,
         "end_offset":   15,
         "type":         "<ALPHANUM>",
         "position":     3
      }
   ]
}

token是一个实际被存储在索引中的词。position指明词在原文本中是第几个出现的。start_offsetend_offset表示词在原文本中占据的位置。

analyze API 对于理解Elasticsearch索引的内在细节是个非常有用的工具,随着内容的推进,我们将继续讨论它。

指定分析器

当Elasticsearch在你的文档中探测到一个新的字符串字段,它将自动设置它为全文string字段并用standard分析器分析。

你不可能总是想要这样做。也许你想使用一个更适合这个数据的语言分析器。或者,你只想把字符串字段当作一个普通的字段——不做任何分析,只存储确切值,就像字符串类型的用户ID或者内部状态字段或者标签。

为了达到这种效果,我们必须通过映射(mapping)人工设置这些字段。

 

 

映射

 

我们知道索引中每个文档都有一个类型(type)。 每个类型拥有自己的映射(mapping)或者模式定义(schema definition)。一个映射定义了字段类型,每个字段的数据类型,以及字段被Elasticsearch处理的方式。映射还用于设置关联到类型上的元数据。

核心简单字段类型

Elasticsearch支持以下简单字段类型:

类型表示的数据类型
String string
Whole number byteshortintegerlong
Floating point floatdouble
Boolean boolean
Date date

当你索引一个包含新字段的文档——一个之前没有的字段——Elasticsearch将使用动态映射猜测字段类型,这类型来自于JSON的基本数据类型,使用以下规则:

JSON typeField type
Boolean: true or false "boolean"
Whole number: 123 "long"
Floating point: 123.45 "double"
String, valid date: "2014-09-15" "date"
String: "foo bar" "string"

注意

这意味着,如果你索引一个带引号的数字——"123",它将被映射为"string"类型,而不是"long"类型。然而,如果字段已经被映射为"long"类型,Elasticsearch将尝试转换字符串为long,并在转换失败时会抛出异常。

查看映射

我们可以使用_mapping后缀来查看Elasticsearch中的映射。在本章开始我们已经找到索引gb类型tweet中的映射:

GET /gb/_mapping/tweet

这展示给了我们字段的映射(叫做属性(properties)),这些映射是Elasticsearch在创建索引时动态生成的:

{
   "gb": {
      "mappings": {
         "tweet": {
            "properties": {
               "date": {
                  "type": "date",
                  "format": "dateOptionalTime"
               },
               "name": {
                  "type": "string"
               },
               "tweet": {
                  "type": "string"
               },
               "user_id": {
                  "type": "long"
               }
            }
         }
      }
   }
}

小提示

错误的映射,例如把age字段映射为string类型而不是integer类型,会造成查询结果混乱。

要检查映射类型,而不是假设它是正确的!

自定义字段映射

映射中最重要的字段参数是type。除了string类型的字段,你可能很少需要映射其他的type

{
    "number_of_clicks": {
        "type": "integer"
    }
}

string类型的字段,默认的,考虑到包含全文本,它们的值在索引前要经过分析器分析,并且在全文搜索此字段前要把查询语句做分析处理。

对于string字段,两个最重要的映射参数是indexanalyer

index

index参数控制字符串以何种方式被索引。它包含以下三个值当中的一个:

解释
analyzed 首先分析这个字符串,然后索引。换言之,以全文形式索引此字段。
not_analyzed 索引这个字段,使之可以被搜索,但是索引内容和指定值一样。不分析此字段。
no 不索引这个字段。这个字段不能为搜索到。

string类型字段默认值是analyzed。如果我们想映射字段为确切值,我们需要设置它为not_analyzed

{
    "tag": {
        "type":     "string",
        "index":    "not_analyzed"
    }
}

其他简单类型——longdoubledate等等——也接受index参数,但相应的值只能是nonot_analyzed,它们的值不能被分析。

分析

对于analyzed类型的字符串字段,使用analyzer参数来指定哪一种分析器将在搜索和索引的时候使用。默认的,Elasticsearch使用standard分析器,但是你可以通过指定一个内建的分析器来更改它,例如whitespacesimpleenglish

{
    "tweet": {
        "type":     "string",
        "analyzer": "english"
    }
}

在《自定义分析器》章节我们将告诉你如何定义和使用自定义的分析器。

更新映射

你可以在第一次创建索引的时候指定映射的类型。此外,你也可以晚些时候为新类型添加映射(或者为已有的类型更新映射)。

重要

你可以向已有映射中增加字段,但你不能修改它。如果一个字段在映射中已经存在,这可能意味着那个字段的数据已经被索引。如果你改变了字段映射,那已经被索引的数据将错误并且不能被正确的搜索到。

我们可以更新一个映射来增加一个新字段,但是不能把已有字段的类型那个从analyzed改到not_analyzed

为了演示两个指定的映射方法,让我们首先删除索引gb

DELETE /gb

然后创建一个新索引,指定tweet字段的分析器为english

PUT /gb <1>
{
  "mappings": {
    "tweet" : {
      "properties" : {
        "tweet" : {
          "type" :    "string",
          "analyzer": "english"
        },
        "date" : {
          "type" :   "date"
        },
        "name" : {
          "type" :   "string"
        },
        "user_id" : {
          "type" :   "long"
        }
      }
    }
  }
}

<1> 这将创建包含mappings的索引,映射在请求体中指定。

再后来,我们决定在tweet的映射中增加一个新的not_analyzed类型的文本字段,叫做tag,使用_mapping后缀:

PUT /gb/_mapping/tweet
{
  "properties" : {
    "tag" : {
      "type" :    "string",
      "index":    "not_analyzed"
    }
  }
}

注意到我们不再需要列出所有的已经存在的字段,因为我们没法修改他们。我们的新字段已经被合并至存在的那个映射中。

测试映射

你可以通过名字使用analyze API测试字符串字段的映射。对比这两个请求的输出:

GET /gb/_analyze?field=tweet
Black-cats <1>

GET /gb/_analyze?field=tag
Black-cats <1>

<1> 我们想要分析的文本被放在请求体中。

tweet字段产生两个词,"black""cat",tag字段产生单独的一个词"Black-cats"。换言之,我们的映射工作正常。

elasticsearch的mapping和analysis

标签:英语单词   lin   简单   状态   option   ase   如何   产生   ref   

原文地址:http://www.cnblogs.com/kangoroo/p/7137204.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!