标签:dma search 最小值 amp oid 查找树 string boolean turn
package com.test.tree; public class BinarySearchTree<T extends Comparable<? super T>> { /*定义二叉树的节点*/ private class BinaryNode<T>{ public T data; public BinaryNode<T> lt; public BinaryNode<T> rt; public BinaryNode(T data) { this(data, null, null); } public BinaryNode(T data, BinaryNode<T> lt, BinaryNode<T> rt) { this.data = data; this.lt = lt; this.rt = rt; } } private BinaryNode<T> root; //定义二叉查找树的根节点 public BinarySearchTree(){ //初始化二叉查找树 root = null; } public void makeEmpty(){ //树清空 root = null; } public boolean isEmpty(){ //树判空 return root == null; } public boolean contains(T x){ //判断是否包含某个值 return contains(root, x); } public boolean contains(BinaryNode<T> root, T x){ if(root == null){ return false; } int compare = x.compareTo(root.data); if(compare == 0){ return true; }else if(compare < 0){ contains(root.lt, x); }else { contains(root.rt, x); } return false; } public T findMin(){ //获得树中最小值 if(!isEmpty()){ return findMin(root).data; } return null; } public T findMax(){ //获得树中最大值 if(!isEmpty()){ return findMax(root).data; } return null; } public void insert(T data){ //插入数据 root = insert(data, root); } public void remove(T data){ root = remove(data, root); } public void printTree(){ if(root == null){ System.out.println("empty tree"); }else{ printTree(root); } } /*中序遍历*/ public void printTree(BinaryNode<T> t){ if(t != null){ printTree(t.lt); System.out.print(t.data+"、"); printTree(t.rt); } } /** * 删除查找树的某个节点,首先用要删除节点的右子树中最小值替换节点值, * 再从右子树中删除此节点,递归调用 * */ public BinaryNode<T> remove(T data, BinaryNode<T> t){ if(t == null){ return t; } int compare = data.compareTo(t.data); if(compare < 0){ //插入值比根节点的值小,插入到左字数 t.lt = remove(data, t.lt); }else if(compare > 0){ //插入值比根节点的值小,插入到左字数 t.rt = remove(data, t.rt); }else if(t.lt != null && t.rt != null){ t.data = findMin(t.rt).data; //将右子树中的最小值赋给要删除的节点 t.rt = remove(t.data, t.rt); }else{ t = t.lt == null? t.rt:t.lt; } return t; } public BinaryNode<T> insert(T data, BinaryNode<T> t){ if(t == null){ return new BinaryNode<T>(data, null, null); } int compare = data.compareTo(t.data); if(compare < 0){ //插入值比根节点的值小,插入到左字数 t.lt = insert(data, t.lt); }else if(compare > 0){ //插入值比根节点的值小,插入到左字数 t.rt = insert(data, t.rt); }else{ } return t; } public BinaryNode<T> findMin(BinaryNode<T> t){ if(t == null){ return t; }else if(t.lt == null){ //查找树的左边比节点值小,找到最左边的节点即可 return t; }else{ return findMin(t.lt); } } public BinaryNode<T> findMax(BinaryNode<T> t){ if(t == null){ return null; }else if(t.rt == null){ //查找树的右边比节点值大,找到最右边的节点即可 return t; } return findMax(t.rt); } public static void main(String[] args) { BinarySearchTree<Integer> binarySearchTree = new BinarySearchTree<Integer>(); binarySearchTree.insert(8); binarySearchTree.insert(4); binarySearchTree.insert(6); binarySearchTree.insert(3); binarySearchTree.insert(14); binarySearchTree.insert(10); System.out.println("最小值: "+binarySearchTree.findMin()); System.out.println("最大值: "+binarySearchTree.findMax()); binarySearchTree.printTree(); binarySearchTree.remove(8); System.out.println(); binarySearchTree.printTree(); } }
标签:dma search 最小值 amp oid 查找树 string boolean turn
原文地址:http://www.cnblogs.com/studyDetail/p/7152008.html